Step |
Hyp |
Ref |
Expression |
1 |
|
isnv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
isnv.2 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
3 |
|
nvex |
⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ) |
4 |
|
vcex |
⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
5 |
4
|
adantr |
⊢ ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
6 |
4
|
simpld |
⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → 𝐺 ∈ V ) |
7 |
|
rnexg |
⊢ ( 𝐺 ∈ V → ran 𝐺 ∈ V ) |
8 |
6 7
|
syl |
⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → ran 𝐺 ∈ V ) |
9 |
1 8
|
eqeltrid |
⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → 𝑋 ∈ V ) |
10 |
|
fex |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ V ) → 𝑁 ∈ V ) |
11 |
9 10
|
sylan2 |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ) → 𝑁 ∈ V ) |
12 |
11
|
ancoms |
⊢ ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝑁 ∈ V ) |
13 |
|
df-3an |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ↔ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ∧ 𝑁 ∈ V ) ) |
14 |
5 12 13
|
sylanbrc |
⊢ ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ) |
15 |
14
|
3adant3 |
⊢ ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ) |
16 |
1 2
|
isnvlem |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
17 |
3 15 16
|
pm5.21nii |
⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |