Metamath Proof Explorer


Theorem isnvc2

Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis isnvc2.1 𝐹 = ( Scalar ‘ 𝑊 )
Assertion isnvc2 ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing ) )

Proof

Step Hyp Ref Expression
1 isnvc2.1 𝐹 = ( Scalar ‘ 𝑊 )
2 isnvc ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec ) )
3 nlmlmod ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod )
4 1 islvec ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing ) )
5 4 baib ( 𝑊 ∈ LMod → ( 𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing ) )
6 3 5 syl ( 𝑊 ∈ NrmMod → ( 𝑊 ∈ LVec ↔ 𝐹 ∈ DivRing ) )
7 6 pm5.32i ( ( 𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec ) ↔ ( 𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing ) )
8 2 7 bitri ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝐹 ∈ DivRing ) )