| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isnvlem.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | isnvlem.2 | ⊢ 𝑍  =  ( GId ‘ 𝐺 ) | 
						
							| 3 |  | df-nv | ⊢ NrmCVec  =  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ( 〈 𝑔 ,  𝑠 〉  ∈  CVecOLD  ∧  𝑛 : ran  𝑔 ⟶ ℝ  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) } | 
						
							| 4 | 3 | eleq2i | ⊢ ( 〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉  ∈  NrmCVec  ↔  〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉  ∈  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ( 〈 𝑔 ,  𝑠 〉  ∈  CVecOLD  ∧  𝑛 : ran  𝑔 ⟶ ℝ  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) } ) | 
						
							| 5 |  | opeq1 | ⊢ ( 𝑔  =  𝐺  →  〈 𝑔 ,  𝑠 〉  =  〈 𝐺 ,  𝑠 〉 ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑔  =  𝐺  →  ( 〈 𝑔 ,  𝑠 〉  ∈  CVecOLD  ↔  〈 𝐺 ,  𝑠 〉  ∈  CVecOLD ) ) | 
						
							| 7 |  | rneq | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  ran  𝐺 ) | 
						
							| 8 | 7 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  𝑋 ) | 
						
							| 9 | 8 | feq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑛 : ran  𝑔 ⟶ ℝ  ↔  𝑛 : 𝑋 ⟶ ℝ ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( GId ‘ 𝑔 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 11 | 10 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( GId ‘ 𝑔 )  =  𝑍 ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥  =  ( GId ‘ 𝑔 )  ↔  𝑥  =  𝑍 ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ↔  ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 ) ) ) | 
						
							| 14 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥 𝑔 𝑦 )  =  ( 𝑥 𝐺 𝑦 ) ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  =  ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ) | 
						
							| 16 | 15 | breq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) )  ↔  ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) | 
						
							| 17 | 8 16 | raleqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 13 17 | 3anbi13d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) )  ↔  ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) ) | 
						
							| 19 | 8 18 | raleqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑥  ∈  ran  𝑔 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) ) | 
						
							| 20 | 6 9 19 | 3anbi123d | ⊢ ( 𝑔  =  𝐺  →  ( ( 〈 𝑔 ,  𝑠 〉  ∈  CVecOLD  ∧  𝑛 : ran  𝑔 ⟶ ℝ  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) )  ↔  ( 〈 𝐺 ,  𝑠 〉  ∈  CVecOLD  ∧  𝑛 : 𝑋 ⟶ ℝ  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 21 |  | opeq2 | ⊢ ( 𝑠  =  𝑆  →  〈 𝐺 ,  𝑠 〉  =  〈 𝐺 ,  𝑆 〉 ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑠  =  𝑆  →  ( 〈 𝐺 ,  𝑠 〉  ∈  CVecOLD  ↔  〈 𝐺 ,  𝑆 〉  ∈  CVecOLD ) ) | 
						
							| 23 |  | oveq | ⊢ ( 𝑠  =  𝑆  →  ( 𝑦 𝑠 𝑥 )  =  ( 𝑦 𝑆 𝑥 ) ) | 
						
							| 24 | 23 | fveqeq2d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ↔  ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ↔  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) ) ) ) | 
						
							| 26 | 25 | 3anbi2d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) )  ↔  ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) ) | 
						
							| 28 | 22 27 | 3anbi13d | ⊢ ( 𝑠  =  𝑆  →  ( ( 〈 𝐺 ,  𝑠 〉  ∈  CVecOLD  ∧  𝑛 : 𝑋 ⟶ ℝ  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) )  ↔  ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  ∧  𝑛 : 𝑋 ⟶ ℝ  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 29 |  | feq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛 : 𝑋 ⟶ ℝ  ↔  𝑁 : 𝑋 ⟶ ℝ ) ) | 
						
							| 30 |  | fveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) ) | 
						
							| 31 | 30 | eqeq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛 ‘ 𝑥 )  =  0  ↔  ( 𝑁 ‘ 𝑥 )  =  0 ) ) | 
						
							| 32 | 31 | imbi1d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ↔  ( ( 𝑁 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 ) ) ) | 
						
							| 33 |  | fveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) ) | 
						
							| 34 | 30 | oveq2d | ⊢ ( 𝑛  =  𝑁  →  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑁 ‘ 𝑥 ) ) ) | 
						
							| 35 | 33 34 | eqeq12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ↔  ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 36 | 35 | ralbidv | ⊢ ( 𝑛  =  𝑁  →  ( ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ↔  ∀ 𝑦  ∈  ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑁 ‘ 𝑥 ) ) ) ) | 
						
							| 37 |  | fveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  =  ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ) | 
						
							| 38 |  | fveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) | 
						
							| 39 | 30 38 | oveq12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) )  =  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 40 | 37 39 | breq12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) )  ↔  ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 41 | 40 | ralbidv | ⊢ ( 𝑛  =  𝑁  →  ( ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) ) | 
						
							| 42 | 32 36 41 | 3anbi123d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) )  ↔  ( ( ( 𝑁 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑁 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 43 | 42 | ralbidv | ⊢ ( 𝑛  =  𝑁  →  ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑁 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑁 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) ) ) | 
						
							| 44 | 29 43 | 3anbi23d | ⊢ ( 𝑛  =  𝑁  →  ( ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  ∧  𝑛 : 𝑋 ⟶ ℝ  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) )  ↔  ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  ∧  𝑁 : 𝑋 ⟶ ℝ  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑁 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑁 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 45 | 20 28 44 | eloprabg | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  V  ∧  𝑁  ∈  V )  →  ( 〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉  ∈  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ( 〈 𝑔 ,  𝑠 〉  ∈  CVecOLD  ∧  𝑛 : ran  𝑔 ⟶ ℝ  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) }  ↔  ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  ∧  𝑁 : 𝑋 ⟶ ℝ  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑁 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑁 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 46 | 4 45 | bitrid | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  V  ∧  𝑁  ∈  V )  →  ( 〈 〈 𝐺 ,  𝑆 〉 ,  𝑁 〉  ∈  NrmCVec  ↔  ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  ∧  𝑁 : 𝑋 ⟶ ℝ  ∧  ∀ 𝑥  ∈  𝑋 ( ( ( 𝑁 ‘ 𝑥 )  =  0  →  𝑥  =  𝑍 )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑁 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) )  ≤  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |