Step |
Hyp |
Ref |
Expression |
1 |
|
isnvlem.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
isnvlem.2 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
3 |
|
df-nv |
⊢ NrmCVec = { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } |
4 |
3
|
eleq2i |
⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } ) |
5 |
|
opeq1 |
⊢ ( 𝑔 = 𝐺 → 〈 𝑔 , 𝑠 〉 = 〈 𝐺 , 𝑠 〉 ) |
6 |
5
|
eleq1d |
⊢ ( 𝑔 = 𝐺 → ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ↔ 〈 𝐺 , 𝑠 〉 ∈ CVecOLD ) ) |
7 |
|
rneq |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
9 |
8
|
feq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑛 : ran 𝑔 ⟶ ℝ ↔ 𝑛 : 𝑋 ⟶ ℝ ) ) |
10 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = ( GId ‘ 𝐺 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = 𝑍 ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 = ( GId ‘ 𝑔 ) ↔ 𝑥 = 𝑍 ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ↔ ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ) ) |
14 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ) |
16 |
15
|
breq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ↔ ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) |
17 |
8 16
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) |
18 |
13 17
|
3anbi13d |
⊢ ( 𝑔 = 𝐺 → ( ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) |
19 |
8 18
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) |
20 |
6 9 19
|
3anbi123d |
⊢ ( 𝑔 = 𝐺 → ( ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ↔ ( 〈 𝐺 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) ) |
21 |
|
opeq2 |
⊢ ( 𝑠 = 𝑆 → 〈 𝐺 , 𝑠 〉 = 〈 𝐺 , 𝑆 〉 ) |
22 |
21
|
eleq1d |
⊢ ( 𝑠 = 𝑆 → ( 〈 𝐺 , 𝑠 〉 ∈ CVecOLD ↔ 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ) ) |
23 |
|
oveq |
⊢ ( 𝑠 = 𝑆 → ( 𝑦 𝑠 𝑥 ) = ( 𝑦 𝑆 𝑥 ) ) |
24 |
23
|
fveqeq2d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ) ) |
26 |
25
|
3anbi2d |
⊢ ( 𝑠 = 𝑆 → ( ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) |
28 |
22 27
|
3anbi13d |
⊢ ( 𝑠 = 𝑆 → ( ( 〈 𝐺 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑛 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) ) |
29 |
|
feq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 : 𝑋 ⟶ ℝ ↔ 𝑁 : 𝑋 ⟶ ℝ ) ) |
30 |
|
fveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑥 ) ) |
31 |
30
|
eqeq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ 𝑥 ) = 0 ↔ ( 𝑁 ‘ 𝑥 ) = 0 ) ) |
32 |
31
|
imbi1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ↔ ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ) ) |
33 |
|
fveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) ) |
34 |
30
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) ) |
37 |
|
fveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ) |
38 |
|
fveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) |
39 |
30 38
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
40 |
37 39
|
breq12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
41 |
40
|
ralbidv |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
42 |
32 36 41
|
3anbi123d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
43 |
42
|
ralbidv |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
44 |
29 43
|
3anbi23d |
⊢ ( 𝑛 = 𝑁 → ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑛 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
45 |
20 28 44
|
eloprabg |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
46 |
4 45
|
syl5bb |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |