Metamath Proof Explorer


Theorem isnzr

Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses isnzr.o 1 = ( 1r𝑅 )
isnzr.z 0 = ( 0g𝑅 )
Assertion isnzr ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 10 ) )

Proof

Step Hyp Ref Expression
1 isnzr.o 1 = ( 1r𝑅 )
2 isnzr.z 0 = ( 0g𝑅 )
3 fveq2 ( 𝑟 = 𝑅 → ( 1r𝑟 ) = ( 1r𝑅 ) )
4 3 1 eqtr4di ( 𝑟 = 𝑅 → ( 1r𝑟 ) = 1 )
5 fveq2 ( 𝑟 = 𝑅 → ( 0g𝑟 ) = ( 0g𝑅 ) )
6 5 2 eqtr4di ( 𝑟 = 𝑅 → ( 0g𝑟 ) = 0 )
7 4 6 neeq12d ( 𝑟 = 𝑅 → ( ( 1r𝑟 ) ≠ ( 0g𝑟 ) ↔ 10 ) )
8 df-nzr NzRing = { 𝑟 ∈ Ring ∣ ( 1r𝑟 ) ≠ ( 0g𝑟 ) }
9 7 8 elrab2 ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 10 ) )