Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isnzr.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
isnzr.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
Assertion | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 1 ≠ 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnzr.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
2 | isnzr.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
3 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) | |
4 | 3 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
5 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) | |
6 | 5 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
7 | 4 6 | neeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( 1r ‘ 𝑟 ) ≠ ( 0g ‘ 𝑟 ) ↔ 1 ≠ 0 ) ) |
8 | df-nzr | ⊢ NzRing = { 𝑟 ∈ Ring ∣ ( 1r ‘ 𝑟 ) ≠ ( 0g ‘ 𝑟 ) } | |
9 | 7 8 | elrab2 | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 1 ≠ 0 ) ) |