| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isnzr2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 4 | 2 3 | isnzr | ⊢ ( 𝑅  ∈  NzRing  ↔  ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 5 | 1 2 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) )  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 7 | 1 3 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) )  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) )  →  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 10 |  | df-ne | ⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑥  =  𝑦 ) | 
						
							| 11 |  | neeq1 | ⊢ ( 𝑥  =  ( 1r ‘ 𝑅 )  →  ( 𝑥  ≠  𝑦  ↔  ( 1r ‘ 𝑅 )  ≠  𝑦 ) ) | 
						
							| 12 | 10 11 | bitr3id | ⊢ ( 𝑥  =  ( 1r ‘ 𝑅 )  →  ( ¬  𝑥  =  𝑦  ↔  ( 1r ‘ 𝑅 )  ≠  𝑦 ) ) | 
						
							| 13 |  | neeq2 | ⊢ ( 𝑦  =  ( 0g ‘ 𝑅 )  →  ( ( 1r ‘ 𝑅 )  ≠  𝑦  ↔  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 14 | 12 13 | rspc2ev | ⊢ ( ( ( 1r ‘ 𝑅 )  ∈  𝐵  ∧  ( 0g ‘ 𝑅 )  ∈  𝐵  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) )  →  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ¬  𝑥  =  𝑦 ) | 
						
							| 15 | 6 8 9 14 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) )  →  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ¬  𝑥  =  𝑦 ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝑅  ∈  Ring  →  ( ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 )  →  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ¬  𝑥  =  𝑦 ) ) | 
						
							| 17 | 1 2 3 | ring1eq0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝑅 )  →  𝑥  =  𝑦 ) ) | 
						
							| 18 | 17 | 3expb | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝑅 )  →  𝑥  =  𝑦 ) ) | 
						
							| 19 | 18 | necon3bd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ¬  𝑥  =  𝑦  →  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 20 | 19 | rexlimdvva | ⊢ ( 𝑅  ∈  Ring  →  ( ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ¬  𝑥  =  𝑦  →  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 21 | 16 20 | impbid | ⊢ ( 𝑅  ∈  Ring  →  ( ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 )  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ¬  𝑥  =  𝑦 ) ) | 
						
							| 22 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 23 |  | 1sdom | ⊢ ( 𝐵  ∈  V  →  ( 1o  ≺  𝐵  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ¬  𝑥  =  𝑦 ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( 1o  ≺  𝐵  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ¬  𝑥  =  𝑦 ) | 
						
							| 25 | 21 24 | bitr4di | ⊢ ( 𝑅  ∈  Ring  →  ( ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 )  ↔  1o  ≺  𝐵 ) ) | 
						
							| 26 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 27 |  | sucdom | ⊢ ( 1o  ∈  ω  →  ( 1o  ≺  𝐵  ↔  suc  1o  ≼  𝐵 ) ) | 
						
							| 28 | 26 27 | ax-mp | ⊢ ( 1o  ≺  𝐵  ↔  suc  1o  ≼  𝐵 ) | 
						
							| 29 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 30 | 29 | breq1i | ⊢ ( 2o  ≼  𝐵  ↔  suc  1o  ≼  𝐵 ) | 
						
							| 31 | 28 30 | bitr4i | ⊢ ( 1o  ≺  𝐵  ↔  2o  ≼  𝐵 ) | 
						
							| 32 | 25 31 | bitrdi | ⊢ ( 𝑅  ∈  Ring  →  ( ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 )  ↔  2o  ≼  𝐵 ) ) | 
						
							| 33 | 32 | pm5.32i | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) )  ↔  ( 𝑅  ∈  Ring  ∧  2o  ≼  𝐵 ) ) | 
						
							| 34 | 4 33 | bitri | ⊢ ( 𝑅  ∈  NzRing  ↔  ( 𝑅  ∈  Ring  ∧  2o  ≼  𝐵 ) ) |