| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isocnv3.1 |
⊢ 𝐶 = ( ( 𝐴 × 𝐴 ) ∖ 𝑅 ) |
| 2 |
|
isocnv3.2 |
⊢ 𝐷 = ( ( 𝐵 × 𝐵 ) ∖ 𝑆 ) |
| 3 |
|
notbi |
⊢ ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 4 |
|
brxp |
⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
| 5 |
1
|
breqi |
⊢ ( 𝑥 𝐶 𝑦 ↔ 𝑥 ( ( 𝐴 × 𝐴 ) ∖ 𝑅 ) 𝑦 ) |
| 6 |
|
brdif |
⊢ ( 𝑥 ( ( 𝐴 × 𝐴 ) ∖ 𝑅 ) 𝑦 ↔ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ ¬ 𝑥 𝑅 𝑦 ) ) |
| 7 |
5 6
|
bitri |
⊢ ( 𝑥 𝐶 𝑦 ↔ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ ¬ 𝑥 𝑅 𝑦 ) ) |
| 8 |
7
|
baib |
⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 → ( 𝑥 𝐶 𝑦 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 9 |
4 8
|
sylbir |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝐶 𝑦 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐶 𝑦 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 11 |
|
f1of |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 12 |
|
ffvelcdm |
⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
| 13 |
|
ffvelcdm |
⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) |
| 14 |
12 13
|
anim12dan |
⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) ) |
| 15 |
|
brxp |
⊢ ( ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) ) |
| 16 |
14 15
|
sylibr |
⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ) |
| 17 |
11 16
|
sylan |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ) |
| 18 |
2
|
breqi |
⊢ ( ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) ( ( 𝐵 × 𝐵 ) ∖ 𝑆 ) ( 𝐻 ‘ 𝑦 ) ) |
| 19 |
|
brdif |
⊢ ( ( 𝐻 ‘ 𝑥 ) ( ( 𝐵 × 𝐵 ) ∖ 𝑆 ) ( 𝐻 ‘ 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ∧ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 20 |
18 19
|
bitri |
⊢ ( ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ∧ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 21 |
20
|
baib |
⊢ ( ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) → ( ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ↔ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 22 |
17 21
|
syl |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ↔ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 23 |
10 22
|
bibi12d |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ↔ ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 24 |
3 23
|
bitr4id |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 25 |
24
|
2ralbidva |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 26 |
25
|
pm5.32i |
⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 27 |
|
df-isom |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 28 |
|
df-isom |
⊢ ( 𝐻 Isom 𝐶 , 𝐷 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 29 |
26 27 28
|
3bitr4i |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝐶 , 𝐷 ( 𝐴 , 𝐵 ) ) |