| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isoco.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | isoco.o | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 3 |  | isoco.n | ⊢ 𝐼  =  ( Iso ‘ 𝐶 ) | 
						
							| 4 |  | isoco.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 5 |  | isoco.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | isoco.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | isoco.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 8 |  | isoco.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋 𝐼 𝑌 ) ) | 
						
							| 9 |  | isoco.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑌 𝐼 𝑍 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Inv ‘ 𝐶 )  =  ( Inv ‘ 𝐶 ) | 
						
							| 11 | 1 10 4 5 6 3 8 2 7 9 | invco | ⊢ ( 𝜑  →  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉  ·  𝑍 ) 𝐹 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 ,  𝑌 〉  ·  𝑋 ) ( ( 𝑌 ( Inv ‘ 𝐶 ) 𝑍 ) ‘ 𝐺 ) ) ) | 
						
							| 12 | 1 10 4 5 7 3 11 | inviso1 | ⊢ ( 𝜑  →  ( 𝐺 ( 〈 𝑋 ,  𝑌 〉  ·  𝑍 ) 𝐹 )  ∈  ( 𝑋 𝐼 𝑍 ) ) |