Metamath Proof Explorer


Theorem isoco

Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isoco.b 𝐵 = ( Base ‘ 𝐶 )
isoco.o · = ( comp ‘ 𝐶 )
isoco.n 𝐼 = ( Iso ‘ 𝐶 )
isoco.c ( 𝜑𝐶 ∈ Cat )
isoco.x ( 𝜑𝑋𝐵 )
isoco.y ( 𝜑𝑌𝐵 )
isoco.z ( 𝜑𝑍𝐵 )
isoco.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
isoco.g ( 𝜑𝐺 ∈ ( 𝑌 𝐼 𝑍 ) )
Assertion isoco ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐼 𝑍 ) )

Proof

Step Hyp Ref Expression
1 isoco.b 𝐵 = ( Base ‘ 𝐶 )
2 isoco.o · = ( comp ‘ 𝐶 )
3 isoco.n 𝐼 = ( Iso ‘ 𝐶 )
4 isoco.c ( 𝜑𝐶 ∈ Cat )
5 isoco.x ( 𝜑𝑋𝐵 )
6 isoco.y ( 𝜑𝑌𝐵 )
7 isoco.z ( 𝜑𝑍𝐵 )
8 isoco.f ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
9 isoco.g ( 𝜑𝐺 ∈ ( 𝑌 𝐼 𝑍 ) )
10 eqid ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 )
11 1 10 4 5 6 3 8 2 7 9 invco ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( ⟨ 𝑍 , 𝑌· 𝑋 ) ( ( 𝑌 ( Inv ‘ 𝐶 ) 𝑍 ) ‘ 𝐺 ) ) )
12 1 10 4 5 7 3 11 inviso1 ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐼 𝑍 ) )