Metamath Proof Explorer


Theorem isodd3

Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion isodd3 ( 𝑍 ∈ Odd ↔ ( 𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑧 = 𝑍 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑍 ) )
2 1 notbid ( 𝑧 = 𝑍 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑍 ) )
3 dfodd3 Odd = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 }
4 2 3 elrab2 ( 𝑍 ∈ Odd ↔ ( 𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍 ) )