Metamath Proof Explorer


Theorem isoeq1

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq1 ( 𝐻 = 𝐺 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 f1oeq1 ( 𝐻 = 𝐺 → ( 𝐻 : 𝐴1-1-onto𝐵𝐺 : 𝐴1-1-onto𝐵 ) )
2 fveq1 ( 𝐻 = 𝐺 → ( 𝐻𝑥 ) = ( 𝐺𝑥 ) )
3 fveq1 ( 𝐻 = 𝐺 → ( 𝐻𝑦 ) = ( 𝐺𝑦 ) )
4 2 3 breq12d ( 𝐻 = 𝐺 → ( ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ↔ ( 𝐺𝑥 ) 𝑆 ( 𝐺𝑦 ) ) )
5 4 bibi2d ( 𝐻 = 𝐺 → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ↔ ( 𝑥 𝑅 𝑦 ↔ ( 𝐺𝑥 ) 𝑆 ( 𝐺𝑦 ) ) ) )
6 5 2ralbidv ( 𝐻 = 𝐺 → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ↔ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐺𝑥 ) 𝑆 ( 𝐺𝑦 ) ) ) )
7 1 6 anbi12d ( 𝐻 = 𝐺 → ( ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) ↔ ( 𝐺 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐺𝑥 ) 𝑆 ( 𝐺𝑦 ) ) ) ) )
8 df-isom ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
9 df-isom ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐺 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐺𝑥 ) 𝑆 ( 𝐺𝑦 ) ) ) )
10 7 8 9 3bitr4g ( 𝐻 = 𝐺 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) )