Metamath Proof Explorer


Theorem isoeq5

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq5 ( 𝐵 = 𝐶 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 f1oeq3 ( 𝐵 = 𝐶 → ( 𝐻 : 𝐴1-1-onto𝐵𝐻 : 𝐴1-1-onto𝐶 ) )
2 1 anbi1d ( 𝐵 = 𝐶 → ( ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) ↔ ( 𝐻 : 𝐴1-1-onto𝐶 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) ) )
3 df-isom ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
4 df-isom ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ↔ ( 𝐻 : 𝐴1-1-onto𝐶 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
5 2 3 4 3bitr4g ( 𝐵 = 𝐶 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ) )