Step |
Hyp |
Ref |
Expression |
1 |
|
f1oeq3 |
⊢ ( 𝐵 = 𝐶 → ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐻 : 𝐴 –1-1-onto→ 𝐶 ) ) |
2 |
1
|
anbi1d |
⊢ ( 𝐵 = 𝐶 → ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) ) |
3 |
|
df-isom |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
4 |
|
df-isom |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
5 |
2 3 4
|
3bitr4g |
⊢ ( 𝐵 = 𝐶 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐶 ) ) ) |