| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmexg |
⊢ ( 𝑥 ∈ V → dom 𝑥 ∈ V ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ V ) → dom 𝑥 ∈ V ) |
| 3 |
2
|
ralrimiva |
⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ V dom 𝑥 ∈ V ) |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ dom 𝑥 ) = ( 𝑥 ∈ V ↦ dom 𝑥 ) |
| 5 |
4
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ V dom 𝑥 ∈ V → ( 𝑥 ∈ V ↦ dom 𝑥 ) Fn V ) |
| 6 |
3 5
|
syl |
⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ V ↦ dom 𝑥 ) Fn V ) |
| 7 |
|
ovex |
⊢ ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∈ V |
| 8 |
7
|
inex1 |
⊢ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ∈ V |
| 9 |
8
|
a1i |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ∈ V ) |
| 10 |
9
|
ralrimivva |
⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ∈ V ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) |
| 12 |
11
|
fnmpo |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ∈ V → ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 13 |
10 12
|
syl |
⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 14 |
|
df-inv |
⊢ Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Sect ‘ 𝑐 ) = ( Sect ‘ 𝐶 ) ) |
| 17 |
16
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) = ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ) |
| 18 |
16
|
oveqd |
⊢ ( 𝑐 = 𝐶 → ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) = ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) |
| 19 |
18
|
cnveqd |
⊢ ( 𝑐 = 𝐶 → ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) = ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) |
| 20 |
17 19
|
ineq12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) = ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) |
| 21 |
15 15 20
|
mpoeq123dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) ) |
| 22 |
|
id |
⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) |
| 23 |
|
fvex |
⊢ ( Base ‘ 𝐶 ) ∈ V |
| 24 |
23 23
|
pm3.2i |
⊢ ( ( Base ‘ 𝐶 ) ∈ V ∧ ( Base ‘ 𝐶 ) ∈ V ) |
| 25 |
|
mpoexga |
⊢ ( ( ( Base ‘ 𝐶 ) ∈ V ∧ ( Base ‘ 𝐶 ) ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) ∈ V ) |
| 26 |
24 25
|
mp1i |
⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) ∈ V ) |
| 27 |
14 21 22 26
|
fvmptd3 |
⊢ ( 𝐶 ∈ Cat → ( Inv ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) ) |
| 28 |
27
|
fneq1d |
⊢ ( 𝐶 ∈ Cat → ( ( Inv ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 29 |
13 28
|
mpbird |
⊢ ( 𝐶 ∈ Cat → ( Inv ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 30 |
|
ssv |
⊢ ran ( Inv ‘ 𝐶 ) ⊆ V |
| 31 |
30
|
a1i |
⊢ ( 𝐶 ∈ Cat → ran ( Inv ‘ 𝐶 ) ⊆ V ) |
| 32 |
|
fnco |
⊢ ( ( ( 𝑥 ∈ V ↦ dom 𝑥 ) Fn V ∧ ( Inv ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ran ( Inv ‘ 𝐶 ) ⊆ V ) → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 33 |
6 29 31 32
|
syl3anc |
⊢ ( 𝐶 ∈ Cat → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 34 |
|
isofval |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ) |
| 35 |
34
|
fneq1d |
⊢ ( 𝐶 ∈ Cat → ( ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 36 |
33 35
|
mpbird |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |