| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmexg |
⊢ ( 𝑥 ∈ V → dom 𝑥 ∈ V ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ V ) → dom 𝑥 ∈ V ) |
| 3 |
2
|
ralrimiva |
⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ V dom 𝑥 ∈ V ) |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ dom 𝑥 ) = ( 𝑥 ∈ V ↦ dom 𝑥 ) |
| 5 |
4
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ V dom 𝑥 ∈ V → ( 𝑥 ∈ V ↦ dom 𝑥 ) Fn V ) |
| 6 |
3 5
|
syl |
⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ V ↦ dom 𝑥 ) Fn V ) |
| 7 |
|
invfn |
⊢ ( 𝐶 ∈ Cat → ( Inv ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 8 |
|
ssv |
⊢ ran ( Inv ‘ 𝐶 ) ⊆ V |
| 9 |
8
|
a1i |
⊢ ( 𝐶 ∈ Cat → ran ( Inv ‘ 𝐶 ) ⊆ V ) |
| 10 |
|
fnco |
⊢ ( ( ( 𝑥 ∈ V ↦ dom 𝑥 ) Fn V ∧ ( Inv ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ran ( Inv ‘ 𝐶 ) ⊆ V ) → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 11 |
6 7 9 10
|
syl3anc |
⊢ ( 𝐶 ∈ Cat → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 12 |
|
isofval |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ) |
| 13 |
12
|
fneq1d |
⊢ ( 𝐶 ∈ Cat → ( ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 14 |
11 13
|
mpbird |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |