Step |
Hyp |
Ref |
Expression |
1 |
|
isocnv |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) |
2 |
|
id |
⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) |
3 |
|
isof1o |
⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 ) |
4 |
|
f1ofun |
⊢ ( ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 → Fun ◡ 𝐻 ) |
5 |
|
vex |
⊢ 𝑥 ∈ V |
6 |
5
|
funimaex |
⊢ ( Fun ◡ 𝐻 → ( ◡ 𝐻 “ 𝑥 ) ∈ V ) |
7 |
3 4 6
|
3syl |
⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ( ◡ 𝐻 “ 𝑥 ) ∈ V ) |
8 |
2 7
|
isofrlem |
⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ( 𝑅 Fr 𝐴 → 𝑆 Fr 𝐵 ) ) |
9 |
1 8
|
syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Fr 𝐴 → 𝑆 Fr 𝐵 ) ) |
10 |
|
id |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
11 |
|
isof1o |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
12 |
|
f1ofun |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐻 ) |
13 |
5
|
funimaex |
⊢ ( Fun 𝐻 → ( 𝐻 “ 𝑥 ) ∈ V ) |
14 |
11 12 13
|
3syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻 “ 𝑥 ) ∈ V ) |
15 |
10 14
|
isofrlem |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
16 |
9 15
|
impbid |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵 ) ) |