| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐻  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐵  ∈  𝑉 )  →  𝐻  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) | 
						
							| 2 |  | imassrn | ⊢ ( 𝐻  “  𝑥 )  ⊆  ran  𝐻 | 
						
							| 3 |  | isof1o | ⊢ ( 𝐻  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 4 |  | f1of | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵  →  𝐻 : 𝐴 ⟶ 𝐵 ) | 
						
							| 5 |  | frn | ⊢ ( 𝐻 : 𝐴 ⟶ 𝐵  →  ran  𝐻  ⊆  𝐵 ) | 
						
							| 6 | 3 4 5 | 3syl | ⊢ ( 𝐻  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  ran  𝐻  ⊆  𝐵 ) | 
						
							| 7 | 2 6 | sstrid | ⊢ ( 𝐻  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  ( 𝐻  “  𝑥 )  ⊆  𝐵 ) | 
						
							| 8 |  | ssexg | ⊢ ( ( ( 𝐻  “  𝑥 )  ⊆  𝐵  ∧  𝐵  ∈  𝑉 )  →  ( 𝐻  “  𝑥 )  ∈  V ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( 𝐻  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐵  ∈  𝑉 )  →  ( 𝐻  “  𝑥 )  ∈  V ) | 
						
							| 10 | 1 9 | isofrlem | ⊢ ( ( 𝐻  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐵  ∈  𝑉 )  →  ( 𝑆  Fr  𝐵  →  𝑅  Fr  𝐴 ) ) |