Metamath Proof Explorer


Theorem isofrlem

Description: Lemma for isofr . (Contributed by NM, 29-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses isofrlem.1 ( 𝜑𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
isofrlem.2 ( 𝜑 → ( 𝐻𝑥 ) ∈ V )
Assertion isofrlem ( 𝜑 → ( 𝑆 Fr 𝐵𝑅 Fr 𝐴 ) )

Proof

Step Hyp Ref Expression
1 isofrlem.1 ( 𝜑𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
2 isofrlem.2 ( 𝜑 → ( 𝐻𝑥 ) ∈ V )
3 isof1o ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴1-1-onto𝐵 )
4 1 3 syl ( 𝜑𝐻 : 𝐴1-1-onto𝐵 )
5 f1ofn ( 𝐻 : 𝐴1-1-onto𝐵𝐻 Fn 𝐴 )
6 n0 ( 𝑥 ≠ ∅ ↔ ∃ 𝑦 𝑦𝑥 )
7 fnfvima ( ( 𝐻 Fn 𝐴𝑥𝐴𝑦𝑥 ) → ( 𝐻𝑦 ) ∈ ( 𝐻𝑥 ) )
8 7 ne0d ( ( 𝐻 Fn 𝐴𝑥𝐴𝑦𝑥 ) → ( 𝐻𝑥 ) ≠ ∅ )
9 8 3expia ( ( 𝐻 Fn 𝐴𝑥𝐴 ) → ( 𝑦𝑥 → ( 𝐻𝑥 ) ≠ ∅ ) )
10 9 exlimdv ( ( 𝐻 Fn 𝐴𝑥𝐴 ) → ( ∃ 𝑦 𝑦𝑥 → ( 𝐻𝑥 ) ≠ ∅ ) )
11 6 10 syl5bi ( ( 𝐻 Fn 𝐴𝑥𝐴 ) → ( 𝑥 ≠ ∅ → ( 𝐻𝑥 ) ≠ ∅ ) )
12 11 expimpd ( 𝐻 Fn 𝐴 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( 𝐻𝑥 ) ≠ ∅ ) )
13 5 12 syl ( 𝐻 : 𝐴1-1-onto𝐵 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( 𝐻𝑥 ) ≠ ∅ ) )
14 f1ofo ( 𝐻 : 𝐴1-1-onto𝐵𝐻 : 𝐴onto𝐵 )
15 imassrn ( 𝐻𝑥 ) ⊆ ran 𝐻
16 forn ( 𝐻 : 𝐴onto𝐵 → ran 𝐻 = 𝐵 )
17 15 16 sseqtrid ( 𝐻 : 𝐴onto𝐵 → ( 𝐻𝑥 ) ⊆ 𝐵 )
18 14 17 syl ( 𝐻 : 𝐴1-1-onto𝐵 → ( 𝐻𝑥 ) ⊆ 𝐵 )
19 13 18 jctild ( 𝐻 : 𝐴1-1-onto𝐵 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) ) )
20 4 19 syl ( 𝜑 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) ) )
21 dffr3 ( 𝑆 Fr 𝐵 ↔ ∀ 𝑧 ( ( 𝑧𝐵𝑧 ≠ ∅ ) → ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) )
22 sseq1 ( 𝑧 = ( 𝐻𝑥 ) → ( 𝑧𝐵 ↔ ( 𝐻𝑥 ) ⊆ 𝐵 ) )
23 neeq1 ( 𝑧 = ( 𝐻𝑥 ) → ( 𝑧 ≠ ∅ ↔ ( 𝐻𝑥 ) ≠ ∅ ) )
24 22 23 anbi12d ( 𝑧 = ( 𝐻𝑥 ) → ( ( 𝑧𝐵𝑧 ≠ ∅ ) ↔ ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) ) )
25 ineq1 ( 𝑧 = ( 𝐻𝑥 ) → ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) )
26 25 eqeq1d ( 𝑧 = ( 𝐻𝑥 ) → ( ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ↔ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) )
27 26 rexeqbi1dv ( 𝑧 = ( 𝐻𝑥 ) → ( ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ↔ ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) )
28 24 27 imbi12d ( 𝑧 = ( 𝐻𝑥 ) → ( ( ( 𝑧𝐵𝑧 ≠ ∅ ) → ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ↔ ( ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
29 28 spcgv ( ( 𝐻𝑥 ) ∈ V → ( ∀ 𝑧 ( ( 𝑧𝐵𝑧 ≠ ∅ ) → ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
30 2 29 syl ( 𝜑 → ( ∀ 𝑧 ( ( 𝑧𝐵𝑧 ≠ ∅ ) → ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
31 21 30 syl5bi ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
32 20 31 syl5d ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
33 4 adantr ( ( 𝜑𝑥𝐴 ) → 𝐻 : 𝐴1-1-onto𝐵 )
34 f1ofun ( 𝐻 : 𝐴1-1-onto𝐵 → Fun 𝐻 )
35 33 34 syl ( ( 𝜑𝑥𝐴 ) → Fun 𝐻 )
36 simpl ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → 𝑤 ∈ ( 𝐻𝑥 ) )
37 fvelima ( ( Fun 𝐻𝑤 ∈ ( 𝐻𝑥 ) ) → ∃ 𝑦𝑥 ( 𝐻𝑦 ) = 𝑤 )
38 35 36 37 syl2an ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ∃ 𝑦𝑥 ( 𝐻𝑦 ) = 𝑤 )
39 simpr ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ )
40 ssel ( 𝑥𝐴 → ( 𝑦𝑥𝑦𝐴 ) )
41 40 imdistani ( ( 𝑥𝐴𝑦𝑥 ) → ( 𝑥𝐴𝑦𝐴 ) )
42 isomin ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { ( 𝐻𝑦 ) } ) ) = ∅ ) )
43 1 41 42 syl2an ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝑥 ) ) → ( ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { ( 𝐻𝑦 ) } ) ) = ∅ ) )
44 sneq ( ( 𝐻𝑦 ) = 𝑤 → { ( 𝐻𝑦 ) } = { 𝑤 } )
45 44 imaeq2d ( ( 𝐻𝑦 ) = 𝑤 → ( 𝑆 “ { ( 𝐻𝑦 ) } ) = ( 𝑆 “ { 𝑤 } ) )
46 45 ineq2d ( ( 𝐻𝑦 ) = 𝑤 → ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { ( 𝐻𝑦 ) } ) ) = ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) )
47 46 eqeq1d ( ( 𝐻𝑦 ) = 𝑤 → ( ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { ( 𝐻𝑦 ) } ) ) = ∅ ↔ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) )
48 43 47 sylan9bb ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝑥 ) ) ∧ ( 𝐻𝑦 ) = 𝑤 ) → ( ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) )
49 39 48 syl5ibr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝑥 ) ) ∧ ( 𝐻𝑦 ) = 𝑤 ) → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
50 49 exp42 ( 𝜑 → ( 𝑥𝐴 → ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) )
51 50 imp ( ( 𝜑𝑥𝐴 ) → ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) )
52 51 com3l ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( ( 𝜑𝑥𝐴 ) → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) )
53 52 com4t ( ( 𝜑𝑥𝐴 ) → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) )
54 53 imp ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
55 54 reximdvai ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ( ∃ 𝑦𝑥 ( 𝐻𝑦 ) = 𝑤 → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
56 38 55 mpd ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ )
57 56 rexlimdvaa ( ( 𝜑𝑥𝐴 ) → ( ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
58 57 ex ( 𝜑 → ( 𝑥𝐴 → ( ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
59 58 adantrd ( 𝜑 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
60 59 a2d ( 𝜑 → ( ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
61 32 60 syld ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
62 61 alrimdv ( 𝜑 → ( 𝑆 Fr 𝐵 → ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
63 dffr3 ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
64 62 63 syl6ibr ( 𝜑 → ( 𝑆 Fr 𝐵𝑅 Fr 𝐴 ) )