| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-iso | ⊢ Iso  =  ( 𝑐  ∈  Cat  ↦  ( ( 𝑥  ∈  V  ↦  dom  𝑥 )  ∘  ( Inv ‘ 𝑐 ) ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Inv ‘ 𝑐 )  =  ( Inv ‘ 𝐶 ) ) | 
						
							| 3 | 2 | coeq2d | ⊢ ( 𝑐  =  𝐶  →  ( ( 𝑥  ∈  V  ↦  dom  𝑥 )  ∘  ( Inv ‘ 𝑐 ) )  =  ( ( 𝑥  ∈  V  ↦  dom  𝑥 )  ∘  ( Inv ‘ 𝐶 ) ) ) | 
						
							| 4 |  | id | ⊢ ( 𝐶  ∈  Cat  →  𝐶  ∈  Cat ) | 
						
							| 5 |  | funmpt | ⊢ Fun  ( 𝑥  ∈  V  ↦  dom  𝑥 ) | 
						
							| 6 |  | fvexd | ⊢ ( 𝐶  ∈  Cat  →  ( Inv ‘ 𝐶 )  ∈  V ) | 
						
							| 7 |  | cofunexg | ⊢ ( ( Fun  ( 𝑥  ∈  V  ↦  dom  𝑥 )  ∧  ( Inv ‘ 𝐶 )  ∈  V )  →  ( ( 𝑥  ∈  V  ↦  dom  𝑥 )  ∘  ( Inv ‘ 𝐶 ) )  ∈  V ) | 
						
							| 8 | 5 6 7 | sylancr | ⊢ ( 𝐶  ∈  Cat  →  ( ( 𝑥  ∈  V  ↦  dom  𝑥 )  ∘  ( Inv ‘ 𝐶 ) )  ∈  V ) | 
						
							| 9 | 1 3 4 8 | fvmptd3 | ⊢ ( 𝐶  ∈  Cat  →  ( Iso ‘ 𝐶 )  =  ( ( 𝑥  ∈  V  ↦  dom  𝑥 )  ∘  ( Inv ‘ 𝐶 ) ) ) |