Step |
Hyp |
Ref |
Expression |
1 |
|
df-iso |
⊢ Iso = ( 𝑐 ∈ Cat ↦ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) ) |
2 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Inv ‘ 𝑐 ) = ( Inv ‘ 𝐶 ) ) |
3 |
2
|
coeq2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) = ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ) |
4 |
|
id |
⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) |
5 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ V ↦ dom 𝑥 ) |
6 |
|
fvexd |
⊢ ( 𝐶 ∈ Cat → ( Inv ‘ 𝐶 ) ∈ V ) |
7 |
|
cofunexg |
⊢ ( ( Fun ( 𝑥 ∈ V ↦ dom 𝑥 ) ∧ ( Inv ‘ 𝐶 ) ∈ V ) → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ∈ V ) |
8 |
5 6 7
|
sylancr |
⊢ ( 𝐶 ∈ Cat → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ∈ V ) |
9 |
1 3 4 8
|
fvmptd3 |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ) |