| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isohom.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | isohom.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | isohom.i | ⊢ 𝐼  =  ( Iso ‘ 𝐶 ) | 
						
							| 4 |  | isohom.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 5 |  | isohom.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | isohom.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( Inv ‘ 𝐶 )  =  ( Inv ‘ 𝐶 ) | 
						
							| 8 | 1 7 4 5 6 3 | isoval | ⊢ ( 𝜑  →  ( 𝑋 𝐼 𝑌 )  =  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) | 
						
							| 9 | 1 7 4 5 6 2 | invss | ⊢ ( 𝜑  →  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  ⊆  ( ( 𝑋 𝐻 𝑌 )  ×  ( 𝑌 𝐻 𝑋 ) ) ) | 
						
							| 10 |  | dmss | ⊢ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  ⊆  ( ( 𝑋 𝐻 𝑌 )  ×  ( 𝑌 𝐻 𝑋 ) )  →  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  ⊆  dom  ( ( 𝑋 𝐻 𝑌 )  ×  ( 𝑌 𝐻 𝑋 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  ⊆  dom  ( ( 𝑋 𝐻 𝑌 )  ×  ( 𝑌 𝐻 𝑋 ) ) ) | 
						
							| 12 | 8 11 | eqsstrd | ⊢ ( 𝜑  →  ( 𝑋 𝐼 𝑌 )  ⊆  dom  ( ( 𝑋 𝐻 𝑌 )  ×  ( 𝑌 𝐻 𝑋 ) ) ) | 
						
							| 13 |  | dmxpss | ⊢ dom  ( ( 𝑋 𝐻 𝑌 )  ×  ( 𝑌 𝐻 𝑋 ) )  ⊆  ( 𝑋 𝐻 𝑌 ) | 
						
							| 14 | 12 13 | sstrdi | ⊢ ( 𝜑  →  ( 𝑋 𝐼 𝑌 )  ⊆  ( 𝑋 𝐻 𝑌 ) ) |