| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1oi | ⊢ (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | 
						
							| 2 |  | fvresi | ⊢ ( 𝑥  ∈  𝐴  →  ( (  I   ↾  𝐴 ) ‘ 𝑥 )  =  𝑥 ) | 
						
							| 3 |  | fvresi | ⊢ ( 𝑦  ∈  𝐴  →  ( (  I   ↾  𝐴 ) ‘ 𝑦 )  =  𝑦 ) | 
						
							| 4 | 2 3 | breqan12d | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( ( (  I   ↾  𝐴 ) ‘ 𝑥 ) 𝑅 ( (  I   ↾  𝐴 ) ‘ 𝑦 )  ↔  𝑥 𝑅 𝑦 ) ) | 
						
							| 5 | 4 | bicomd | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥 𝑅 𝑦  ↔  ( (  I   ↾  𝐴 ) ‘ 𝑥 ) 𝑅 ( (  I   ↾  𝐴 ) ‘ 𝑦 ) ) ) | 
						
							| 6 | 5 | rgen2 | ⊢ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ↔  ( (  I   ↾  𝐴 ) ‘ 𝑥 ) 𝑅 ( (  I   ↾  𝐴 ) ‘ 𝑦 ) ) | 
						
							| 7 |  | df-isom | ⊢ ( (  I   ↾  𝐴 )  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 )  ↔  ( (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ↔  ( (  I   ↾  𝐴 ) ‘ 𝑥 ) 𝑅 ( (  I   ↾  𝐴 ) ‘ 𝑦 ) ) ) ) | 
						
							| 8 | 1 6 7 | mpbir2an | ⊢ (  I   ↾  𝐴 )  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) |