Metamath Proof Explorer


Theorem isoid

Description: Identity law for isomorphism. Proposition 6.30(1) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004)

Ref Expression
Assertion isoid ( I ↾ 𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 )

Proof

Step Hyp Ref Expression
1 f1oi ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴
2 fvresi ( 𝑥𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 )
3 fvresi ( 𝑦𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 )
4 2 3 breqan12d ( ( 𝑥𝐴𝑦𝐴 ) → ( ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ↔ 𝑥 𝑅 𝑦 ) )
5 4 bicomd ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) )
6 5 rgen2 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) )
7 df-isom ( ( I ↾ 𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ↔ ( ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) ) )
8 1 6 7 mpbir2an ( I ↾ 𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 )