Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 |
2 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
3 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) |
4 |
2 3
|
breqan12d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ↔ 𝑥 𝑅 𝑦 ) ) |
5 |
4
|
bicomd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
6 |
5
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) |
7 |
|
df-isom |
⊢ ( ( I ↾ 𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ↔ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) ) ) |
8 |
1 6 7
|
mpbir2an |
⊢ ( I ↾ 𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) |