Metamath Proof Explorer


Theorem isoini

Description: Isomorphisms preserve initial segments. Proposition 6.31(2) of TakeutiZaring p. 33. (Contributed by NM, 20-Apr-2004)

Ref Expression
Assertion isoini ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) ) = ( 𝐵 ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) )

Proof

Step Hyp Ref Expression
1 dfima2 ( 𝐻 “ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 }
2 elin ( 𝑦 ∈ ( 𝐵 ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ↔ ( 𝑦𝐵𝑦 ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) )
3 isof1o ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴1-1-onto𝐵 )
4 f1ofo ( 𝐻 : 𝐴1-1-onto𝐵𝐻 : 𝐴onto𝐵 )
5 forn ( 𝐻 : 𝐴onto𝐵 → ran 𝐻 = 𝐵 )
6 5 eleq2d ( 𝐻 : 𝐴onto𝐵 → ( 𝑦 ∈ ran 𝐻𝑦𝐵 ) )
7 3 4 6 3syl ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ ran 𝐻𝑦𝐵 ) )
8 f1ofn ( 𝐻 : 𝐴1-1-onto𝐵𝐻 Fn 𝐴 )
9 fvelrnb ( 𝐻 Fn 𝐴 → ( 𝑦 ∈ ran 𝐻 ↔ ∃ 𝑥𝐴 ( 𝐻𝑥 ) = 𝑦 ) )
10 3 8 9 3syl ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ ran 𝐻 ↔ ∃ 𝑥𝐴 ( 𝐻𝑥 ) = 𝑦 ) )
11 7 10 bitr3d ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦𝐵 ↔ ∃ 𝑥𝐴 ( 𝐻𝑥 ) = 𝑦 ) )
12 fvex ( 𝐻𝐷 ) ∈ V
13 vex 𝑦 ∈ V
14 13 eliniseg ( ( 𝐻𝐷 ) ∈ V → ( 𝑦 ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻𝐷 ) ) )
15 12 14 mp1i ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻𝐷 ) ) )
16 11 15 anbi12d ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑦𝐵𝑦 ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ↔ ( ∃ 𝑥𝐴 ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) )
17 16 adantr ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( ( 𝑦𝐵𝑦 ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ↔ ( ∃ 𝑥𝐴 ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) )
18 elin ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝑅 “ { 𝐷 } ) ) )
19 vex 𝑥 ∈ V
20 19 eliniseg ( 𝐷𝐴 → ( 𝑥 ∈ ( 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) )
21 20 anbi2d ( 𝐷𝐴 → ( ( 𝑥𝐴𝑥 ∈ ( 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥𝐴𝑥 𝑅 𝐷 ) ) )
22 18 21 syl5bb ( 𝐷𝐴 → ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥𝐴𝑥 𝑅 𝐷 ) ) )
23 22 anbi1d ( 𝐷𝐴 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝑥𝐴𝑥 𝑅 𝐷 ) ∧ 𝑥 𝐻 𝑦 ) ) )
24 anass ( ( ( 𝑥𝐴𝑥 𝑅 𝐷 ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥 𝑅 𝐷𝑥 𝐻 𝑦 ) ) )
25 23 24 bitrdi ( 𝐷𝐴 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥 𝑅 𝐷𝑥 𝐻 𝑦 ) ) ) )
26 25 adantl ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥𝐴 ∧ ( 𝑥 𝑅 𝐷𝑥 𝐻 𝑦 ) ) ) )
27 isorel ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝐷𝐴 ) ) → ( 𝑥 𝑅 𝐷 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) ) )
28 3 8 syl ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Fn 𝐴 )
29 fnbrfvb ( ( 𝐻 Fn 𝐴𝑥𝐴 ) → ( ( 𝐻𝑥 ) = 𝑦𝑥 𝐻 𝑦 ) )
30 29 bicomd ( ( 𝐻 Fn 𝐴𝑥𝐴 ) → ( 𝑥 𝐻 𝑦 ↔ ( 𝐻𝑥 ) = 𝑦 ) )
31 28 30 sylan ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑥𝐴 ) → ( 𝑥 𝐻 𝑦 ↔ ( 𝐻𝑥 ) = 𝑦 ) )
32 31 adantrr ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝐷𝐴 ) ) → ( 𝑥 𝐻 𝑦 ↔ ( 𝐻𝑥 ) = 𝑦 ) )
33 27 32 anbi12d ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝐷𝐴 ) ) → ( ( 𝑥 𝑅 𝐷𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) ∧ ( 𝐻𝑥 ) = 𝑦 ) ) )
34 ancom ( ( ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) ∧ ( 𝐻𝑥 ) = 𝑦 ) ↔ ( ( 𝐻𝑥 ) = 𝑦 ∧ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) ) )
35 breq1 ( ( 𝐻𝑥 ) = 𝑦 → ( ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) ↔ 𝑦 𝑆 ( 𝐻𝐷 ) ) )
36 35 pm5.32i ( ( ( 𝐻𝑥 ) = 𝑦 ∧ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) ) ↔ ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) )
37 34 36 bitri ( ( ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) ∧ ( 𝐻𝑥 ) = 𝑦 ) ↔ ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) )
38 33 37 bitrdi ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝐷𝐴 ) ) → ( ( 𝑥 𝑅 𝐷𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) )
39 38 exp32 ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥𝐴 → ( 𝐷𝐴 → ( ( 𝑥 𝑅 𝐷𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) ) ) )
40 39 com23 ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐷𝐴 → ( 𝑥𝐴 → ( ( 𝑥 𝑅 𝐷𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) ) ) )
41 40 imp ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( 𝑥𝐴 → ( ( 𝑥 𝑅 𝐷𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) ) )
42 41 pm5.32d ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( ( 𝑥𝐴 ∧ ( 𝑥 𝑅 𝐷𝑥 𝐻 𝑦 ) ) ↔ ( 𝑥𝐴 ∧ ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) ) )
43 26 42 bitrd ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥𝐴 ∧ ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) ) )
44 43 rexbidv2 ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ↔ ∃ 𝑥𝐴 ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) )
45 r19.41v ( ∃ 𝑥𝐴 ( ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ↔ ( ∃ 𝑥𝐴 ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) )
46 44 45 bitrdi ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ↔ ( ∃ 𝑥𝐴 ( 𝐻𝑥 ) = 𝑦𝑦 𝑆 ( 𝐻𝐷 ) ) ) )
47 17 46 bitr4d ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( ( 𝑦𝐵𝑦 ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ) )
48 2 47 syl5bb ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( 𝑦 ∈ ( 𝐵 ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ) )
49 48 abbi2dv ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( 𝐵 ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 } )
50 1 49 eqtr4id ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( 𝑅 “ { 𝐷 } ) ) ) = ( 𝐵 ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) )