Step |
Hyp |
Ref |
Expression |
1 |
|
dfima2 |
⊢ ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 } |
2 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
3 |
|
isof1o |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
4 |
|
f1ofo |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –onto→ 𝐵 ) |
5 |
|
forn |
⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ran 𝐻 = 𝐵 ) |
6 |
5
|
eleq2d |
⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ( 𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵 ) ) |
7 |
3 4 6
|
3syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵 ) ) |
8 |
|
f1ofn |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Fn 𝐴 ) |
9 |
|
fvelrnb |
⊢ ( 𝐻 Fn 𝐴 → ( 𝑦 ∈ ran 𝐻 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
10 |
3 8 9
|
3syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ ran 𝐻 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
11 |
7 10
|
bitr3d |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
12 |
|
fvex |
⊢ ( 𝐻 ‘ 𝐷 ) ∈ V |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
13
|
eliniseg |
⊢ ( ( 𝐻 ‘ 𝐷 ) ∈ V → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
15 |
12 14
|
mp1i |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
16 |
11 15
|
anbi12d |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
18 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
19 |
|
vex |
⊢ 𝑥 ∈ V |
20 |
19
|
eliniseg |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐷 ) ) ) |
22 |
18 21
|
syl5bb |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐷 ) ) ) |
23 |
22
|
anbi1d |
⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐷 ) ∧ 𝑥 𝐻 𝑦 ) ) ) |
24 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐷 ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ) ) |
25 |
23 24
|
bitrdi |
⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ) ) ) |
27 |
|
isorel |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
28 |
3 8
|
syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Fn 𝐴 ) |
29 |
|
fnbrfvb |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) |
30 |
29
|
bicomd |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐻 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
31 |
28 30
|
sylan |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐻 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
32 |
31
|
adantrr |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝐻 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
33 |
27 32
|
anbi12d |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ∧ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) ) |
34 |
|
ancom |
⊢ ( ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ∧ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
35 |
|
breq1 |
⊢ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
36 |
35
|
pm5.32i |
⊢ ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
37 |
34 36
|
bitri |
⊢ ( ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ∧ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
38 |
33 37
|
bitrdi |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
39 |
38
|
exp32 |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐷 ∈ 𝐴 → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) ) |
40 |
39
|
com23 |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) ) |
41 |
40
|
imp |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) |
42 |
41
|
pm5.32d |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) |
43 |
26 42
|
bitrd |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) |
44 |
43
|
rexbidv2 |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
45 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
46 |
44 45
|
bitrdi |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
47 |
17 46
|
bitr4d |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ) ) |
48 |
2 47
|
syl5bb |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ) ) |
49 |
48
|
abbi2dv |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 } ) |
50 |
1 49
|
eqtr4id |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |