Metamath Proof Explorer
Description: Properties that determine an ortholattice. (Contributed by NM, 18-Sep-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
isolati.1 |
⊢ 𝐾 ∈ Lat |
|
|
isolati.2 |
⊢ 𝐾 ∈ OP |
|
Assertion |
isolatiN |
⊢ 𝐾 ∈ OL |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
isolati.1 |
⊢ 𝐾 ∈ Lat |
2 |
|
isolati.2 |
⊢ 𝐾 ∈ OP |
3 |
|
isolat |
⊢ ( 𝐾 ∈ OL ↔ ( 𝐾 ∈ Lat ∧ 𝐾 ∈ OP ) ) |
4 |
1 2 3
|
mpbir2an |
⊢ 𝐾 ∈ OL |