Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
⊢ ( ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
2
|
elima |
⊢ ( 𝑦 ∈ ( 𝐻 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐻 𝑦 ) |
4 |
|
ssel |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) ) |
5 |
|
isof1o |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
6 |
|
f1ofn |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Fn 𝐴 ) |
7 |
|
fnbrfvb |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) |
8 |
7
|
ex |
⊢ ( 𝐻 Fn 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) ) |
9 |
5 6 8
|
3syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) ) |
10 |
4 9
|
syl9r |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) ) ) |
11 |
10
|
imp31 |
⊢ ( ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) |
12 |
11
|
rexbidva |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐶 ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐻 𝑦 ) ) |
13 |
3 12
|
bitr4id |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝐻 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
14 |
|
fvex |
⊢ ( 𝐻 ‘ 𝐷 ) ∈ V |
15 |
2
|
eliniseg |
⊢ ( ( 𝐻 ‘ 𝐷 ) ∈ V → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
16 |
14 15
|
mp1i |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
17 |
13 16
|
anbi12d |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑦 ∈ ( 𝐻 “ 𝐶 ) ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( ∃ 𝑥 ∈ 𝐶 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
18 |
|
elin |
⊢ ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( 𝑦 ∈ ( 𝐻 “ 𝐶 ) ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
19 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ 𝐶 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ↔ ( ∃ 𝑥 ∈ 𝐶 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
20 |
17 18 19
|
3bitr4g |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ 𝐶 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
21 |
20
|
adantrr |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ 𝐶 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
22 |
|
breq1 |
⊢ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
23 |
22
|
biimpar |
⊢ ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) |
24 |
|
vex |
⊢ 𝑥 ∈ V |
25 |
24
|
eliniseg |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) ) |
26 |
25
|
ad2antll |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) ) |
27 |
|
isorel |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
28 |
26 27
|
bitrd |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
29 |
23 28
|
syl5ibr |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
30 |
29
|
exp32 |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐷 ∈ 𝐴 → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) ) ) |
31 |
4 30
|
syl9r |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝐷 ∈ 𝐴 → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) ) ) ) |
32 |
31
|
com34 |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) ) ) ) |
33 |
32
|
imp32 |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) ) |
34 |
33
|
reximdvai |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∃ 𝑥 ∈ 𝐶 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) → ∃ 𝑥 ∈ 𝐶 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
35 |
21 34
|
sylbid |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) → ∃ 𝑥 ∈ 𝐶 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
36 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
37 |
36
|
exbii |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
38 |
|
neq0 |
⊢ ( ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
39 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐶 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
40 |
37 38 39
|
3bitr4i |
⊢ ( ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ↔ ∃ 𝑥 ∈ 𝐶 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) |
41 |
35 40
|
syl6ibr |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) → ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ) ) |
42 |
41
|
exlimdv |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∃ 𝑦 𝑦 ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) → ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ) ) |
43 |
1 42
|
syl5bi |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ → ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ) ) |
44 |
43
|
con4d |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ → ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
45 |
5 6
|
syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Fn 𝐴 ) |
46 |
|
fnfvima |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) |
47 |
46
|
3expia |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐶 → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
48 |
47
|
adantrr |
⊢ ( ( 𝐻 Fn 𝐴 ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
49 |
45 48
|
sylan |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
50 |
49
|
adantrd |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
51 |
27
|
biimpd |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
52 |
|
fvex |
⊢ ( 𝐻 ‘ 𝑥 ) ∈ V |
53 |
52
|
eliniseg |
⊢ ( ( 𝐻 ‘ 𝐷 ) ∈ V → ( ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
54 |
14 53
|
ax-mp |
⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) |
55 |
51 54
|
syl6ibr |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
56 |
26 55
|
sylbid |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
57 |
56
|
exp32 |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) ) |
58 |
4 57
|
syl9r |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) ) ) |
59 |
58
|
com34 |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) ) ) |
60 |
59
|
imp32 |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) |
61 |
60
|
impd |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
62 |
50 61
|
jcad |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) |
63 |
|
elin |
⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
64 |
62 36 63
|
3imtr4g |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) |
65 |
|
n0i |
⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) |
66 |
64 65
|
syl6 |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
67 |
66
|
exlimdv |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
68 |
38 67
|
syl5bi |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
69 |
44 68
|
impcon4bid |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |