Step |
Hyp |
Ref |
Expression |
1 |
|
iscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
difss |
⊢ ( 𝑋 ∖ 𝑆 ) ⊆ 𝑋 |
3 |
1
|
iscld2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ 𝑆 ) ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ∈ 𝐽 ) ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝐽 ∈ Top → ( ( 𝑋 ∖ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ∈ 𝐽 ) ) |
5 |
|
dfss4 |
⊢ ( 𝑆 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) = 𝑆 ) |
6 |
5
|
biimpi |
⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) = 𝑆 ) |
7 |
6
|
eleq1d |
⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽 ) ) |
8 |
4 7
|
sylan9bb |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ↔ 𝑆 ∈ 𝐽 ) ) |
9 |
8
|
bicomd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐽 ↔ ( 𝑋 ∖ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |