| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
1
|
ntrval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 3 |
|
inss2 |
⊢ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝒫 𝑆 |
| 4 |
3
|
unissi |
⊢ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ ∪ 𝒫 𝑆 |
| 5 |
|
unipw |
⊢ ∪ 𝒫 𝑆 = 𝑆 |
| 6 |
4 5
|
sseqtri |
⊢ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝑆 |
| 7 |
6
|
a1i |
⊢ ( 𝑆 ∈ 𝐽 → ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝑆 ) |
| 8 |
|
id |
⊢ ( 𝑆 ∈ 𝐽 → 𝑆 ∈ 𝐽 ) |
| 9 |
|
pwidg |
⊢ ( 𝑆 ∈ 𝐽 → 𝑆 ∈ 𝒫 𝑆 ) |
| 10 |
8 9
|
elind |
⊢ ( 𝑆 ∈ 𝐽 → 𝑆 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 11 |
|
elssuni |
⊢ ( 𝑆 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) → 𝑆 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 13 |
7 12
|
eqssd |
⊢ ( 𝑆 ∈ 𝐽 → ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = 𝑆 ) |
| 14 |
2 13
|
sylan9eq |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |
| 15 |
14
|
ex |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐽 → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |
| 16 |
1
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
| 17 |
|
eleq1 |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽 ) ) |
| 18 |
16 17
|
syl5ibcom |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 → 𝑆 ∈ 𝐽 ) ) |
| 19 |
15 18
|
impbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐽 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |