| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isopos.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
isopos.e |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
| 3 |
|
isopos.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
| 4 |
|
isopos.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 5 |
|
isopos.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 6 |
|
isopos.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 7 |
|
isopos.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 8 |
|
isopos.f |
⊢ 0 = ( 0. ‘ 𝐾 ) |
| 9 |
|
isopos.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
| 10 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) |
| 11 |
10 1
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
| 12 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( lub ‘ 𝑝 ) = ( lub ‘ 𝐾 ) ) |
| 13 |
12 2
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( lub ‘ 𝑝 ) = 𝑈 ) |
| 14 |
13
|
dmeqd |
⊢ ( 𝑝 = 𝐾 → dom ( lub ‘ 𝑝 ) = dom 𝑈 ) |
| 15 |
11 14
|
eleq12d |
⊢ ( 𝑝 = 𝐾 → ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ↔ 𝐵 ∈ dom 𝑈 ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( glb ‘ 𝑝 ) = ( glb ‘ 𝐾 ) ) |
| 17 |
16 3
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( glb ‘ 𝑝 ) = 𝐺 ) |
| 18 |
17
|
dmeqd |
⊢ ( 𝑝 = 𝐾 → dom ( glb ‘ 𝑝 ) = dom 𝐺 ) |
| 19 |
11 18
|
eleq12d |
⊢ ( 𝑝 = 𝐾 → ( ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ↔ 𝐵 ∈ dom 𝐺 ) ) |
| 20 |
15 19
|
anbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ↔ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( oc ‘ 𝑝 ) = ( oc ‘ 𝐾 ) ) |
| 22 |
21 5
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( oc ‘ 𝑝 ) = ⊥ ) |
| 23 |
22
|
eqeq2d |
⊢ ( 𝑝 = 𝐾 → ( 𝑛 = ( oc ‘ 𝑝 ) ↔ 𝑛 = ⊥ ) ) |
| 24 |
11
|
eleq2d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ↔ ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ( le ‘ 𝐾 ) ) |
| 26 |
25 4
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ≤ ) |
| 27 |
26
|
breqd |
⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( le ‘ 𝑝 ) 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
| 28 |
26
|
breqd |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ↔ ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) |
| 29 |
27 28
|
imbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ) |
| 30 |
24 29
|
3anbi13d |
⊢ ( 𝑝 = 𝐾 → ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ↔ ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( join ‘ 𝑝 ) = ( join ‘ 𝐾 ) ) |
| 32 |
31 6
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( join ‘ 𝑝 ) = ∨ ) |
| 33 |
32
|
oveqd |
⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( 1. ‘ 𝑝 ) = ( 1. ‘ 𝐾 ) ) |
| 35 |
34 9
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( 1. ‘ 𝑝 ) = 1 ) |
| 36 |
33 35
|
eqeq12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ↔ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( meet ‘ 𝑝 ) = ( meet ‘ 𝐾 ) ) |
| 38 |
37 7
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( meet ‘ 𝑝 ) = ∧ ) |
| 39 |
38
|
oveqd |
⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) ) |
| 40 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = ( 0. ‘ 𝐾 ) ) |
| 41 |
40 8
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = 0 ) |
| 42 |
39 41
|
eqeq12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ↔ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) |
| 43 |
30 36 42
|
3anbi123d |
⊢ ( 𝑝 = 𝐾 → ( ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ↔ ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) |
| 44 |
11 43
|
raleqbidv |
⊢ ( 𝑝 = 𝐾 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) |
| 45 |
11 44
|
raleqbidv |
⊢ ( 𝑝 = 𝐾 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) |
| 46 |
23 45
|
anbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ↔ ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) |
| 47 |
46
|
exbidv |
⊢ ( 𝑝 = 𝐾 → ( ∃ 𝑛 ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ↔ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) |
| 48 |
20 47
|
anbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑛 ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ) ↔ ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) ) |
| 49 |
|
df-oposet |
⊢ OP = { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑛 ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ) } |
| 50 |
48 49
|
elrab2 |
⊢ ( 𝐾 ∈ OP ↔ ( 𝐾 ∈ Poset ∧ ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) ) |
| 51 |
|
anass |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ↔ ( 𝐾 ∈ Poset ∧ ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) ) |
| 52 |
|
3anass |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ↔ ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ) |
| 53 |
52
|
bicomi |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ↔ ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) |
| 54 |
5
|
fvexi |
⊢ ⊥ ∈ V |
| 55 |
|
fveq1 |
⊢ ( 𝑛 = ⊥ → ( 𝑛 ‘ 𝑥 ) = ( ⊥ ‘ 𝑥 ) ) |
| 56 |
55
|
eleq1d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ↔ ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 57 |
|
id |
⊢ ( 𝑛 = ⊥ → 𝑛 = ⊥ ) |
| 58 |
57 55
|
fveq12d |
⊢ ( 𝑛 = ⊥ → ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ) |
| 59 |
58
|
eqeq1d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 60 |
|
fveq1 |
⊢ ( 𝑛 = ⊥ → ( 𝑛 ‘ 𝑦 ) = ( ⊥ ‘ 𝑦 ) ) |
| 61 |
60 55
|
breq12d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ↔ ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) |
| 62 |
61
|
imbi2d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ) |
| 63 |
56 59 62
|
3anbi123d |
⊢ ( 𝑛 = ⊥ → ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ↔ ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ) ) |
| 64 |
55
|
oveq2d |
⊢ ( 𝑛 = ⊥ → ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) ) |
| 65 |
64
|
eqeq1d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ↔ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ) ) |
| 66 |
55
|
oveq2d |
⊢ ( 𝑛 = ⊥ → ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) ) |
| 67 |
66
|
eqeq1d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ↔ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) |
| 68 |
63 65 67
|
3anbi123d |
⊢ ( 𝑛 = ⊥ → ( ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ↔ ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
| 69 |
68
|
2ralbidv |
⊢ ( 𝑛 = ⊥ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
| 70 |
54 69
|
ceqsexv |
⊢ ( ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) |
| 71 |
53 70
|
anbi12i |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
| 72 |
50 51 71
|
3bitr2i |
⊢ ( 𝐾 ∈ OP ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |