Step |
Hyp |
Ref |
Expression |
1 |
|
isopos.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
isopos.e |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
3 |
|
isopos.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
4 |
|
isopos.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
5 |
|
isopos.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
6 |
|
isopos.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
7 |
|
isopos.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
8 |
|
isopos.f |
⊢ 0 = ( 0. ‘ 𝐾 ) |
9 |
|
isopos.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
10 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) |
11 |
10 1
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
12 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( lub ‘ 𝑝 ) = ( lub ‘ 𝐾 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( lub ‘ 𝑝 ) = 𝑈 ) |
14 |
13
|
dmeqd |
⊢ ( 𝑝 = 𝐾 → dom ( lub ‘ 𝑝 ) = dom 𝑈 ) |
15 |
11 14
|
eleq12d |
⊢ ( 𝑝 = 𝐾 → ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ↔ 𝐵 ∈ dom 𝑈 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( glb ‘ 𝑝 ) = ( glb ‘ 𝐾 ) ) |
17 |
16 3
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( glb ‘ 𝑝 ) = 𝐺 ) |
18 |
17
|
dmeqd |
⊢ ( 𝑝 = 𝐾 → dom ( glb ‘ 𝑝 ) = dom 𝐺 ) |
19 |
11 18
|
eleq12d |
⊢ ( 𝑝 = 𝐾 → ( ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ↔ 𝐵 ∈ dom 𝐺 ) ) |
20 |
15 19
|
anbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ↔ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( oc ‘ 𝑝 ) = ( oc ‘ 𝐾 ) ) |
22 |
21 5
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( oc ‘ 𝑝 ) = ⊥ ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑝 = 𝐾 → ( 𝑛 = ( oc ‘ 𝑝 ) ↔ 𝑛 = ⊥ ) ) |
24 |
11
|
eleq2d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ↔ ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ( le ‘ 𝐾 ) ) |
26 |
25 4
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ≤ ) |
27 |
26
|
breqd |
⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( le ‘ 𝑝 ) 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
28 |
26
|
breqd |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ↔ ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) |
29 |
27 28
|
imbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ) |
30 |
24 29
|
3anbi13d |
⊢ ( 𝑝 = 𝐾 → ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ↔ ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ) ) |
31 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( join ‘ 𝑝 ) = ( join ‘ 𝐾 ) ) |
32 |
31 6
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( join ‘ 𝑝 ) = ∨ ) |
33 |
32
|
oveqd |
⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) ) |
34 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( 1. ‘ 𝑝 ) = ( 1. ‘ 𝐾 ) ) |
35 |
34 9
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( 1. ‘ 𝑝 ) = 1 ) |
36 |
33 35
|
eqeq12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ↔ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ) ) |
37 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( meet ‘ 𝑝 ) = ( meet ‘ 𝐾 ) ) |
38 |
37 7
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( meet ‘ 𝑝 ) = ∧ ) |
39 |
38
|
oveqd |
⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) ) |
40 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = ( 0. ‘ 𝐾 ) ) |
41 |
40 8
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = 0 ) |
42 |
39 41
|
eqeq12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ↔ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) |
43 |
30 36 42
|
3anbi123d |
⊢ ( 𝑝 = 𝐾 → ( ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ↔ ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) |
44 |
11 43
|
raleqbidv |
⊢ ( 𝑝 = 𝐾 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) |
45 |
11 44
|
raleqbidv |
⊢ ( 𝑝 = 𝐾 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) |
46 |
23 45
|
anbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ↔ ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) |
47 |
46
|
exbidv |
⊢ ( 𝑝 = 𝐾 → ( ∃ 𝑛 ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ↔ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) |
48 |
20 47
|
anbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑛 ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ) ↔ ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) ) |
49 |
|
df-oposet |
⊢ OP = { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑛 ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ) } |
50 |
48 49
|
elrab2 |
⊢ ( 𝐾 ∈ OP ↔ ( 𝐾 ∈ Poset ∧ ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) ) |
51 |
|
anass |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ↔ ( 𝐾 ∈ Poset ∧ ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) ) |
52 |
|
3anass |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ↔ ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ) |
53 |
52
|
bicomi |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ↔ ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) |
54 |
5
|
fvexi |
⊢ ⊥ ∈ V |
55 |
|
fveq1 |
⊢ ( 𝑛 = ⊥ → ( 𝑛 ‘ 𝑥 ) = ( ⊥ ‘ 𝑥 ) ) |
56 |
55
|
eleq1d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ↔ ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ) ) |
57 |
|
id |
⊢ ( 𝑛 = ⊥ → 𝑛 = ⊥ ) |
58 |
57 55
|
fveq12d |
⊢ ( 𝑛 = ⊥ → ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ) |
59 |
58
|
eqeq1d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
60 |
|
fveq1 |
⊢ ( 𝑛 = ⊥ → ( 𝑛 ‘ 𝑦 ) = ( ⊥ ‘ 𝑦 ) ) |
61 |
60 55
|
breq12d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ↔ ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) |
62 |
61
|
imbi2d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ) |
63 |
56 59 62
|
3anbi123d |
⊢ ( 𝑛 = ⊥ → ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ↔ ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ) ) |
64 |
55
|
oveq2d |
⊢ ( 𝑛 = ⊥ → ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) ) |
65 |
64
|
eqeq1d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ↔ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ) ) |
66 |
55
|
oveq2d |
⊢ ( 𝑛 = ⊥ → ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) ) |
67 |
66
|
eqeq1d |
⊢ ( 𝑛 = ⊥ → ( ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ↔ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) |
68 |
63 65 67
|
3anbi123d |
⊢ ( 𝑛 = ⊥ → ( ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ↔ ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
69 |
68
|
2ralbidv |
⊢ ( 𝑛 = ⊥ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
70 |
54 69
|
ceqsexv |
⊢ ( ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) |
71 |
53 70
|
anbi12i |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
72 |
50 51 71
|
3bitr2i |
⊢ ( 𝐾 ∈ OP ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |