Step |
Hyp |
Ref |
Expression |
1 |
|
df-isom |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
2 |
1
|
simprbi |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
3 |
|
breq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 𝑅 𝑦 ↔ 𝐶 𝑅 𝑦 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝐶 ) ) |
5 |
4
|
breq1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
6 |
3 5
|
bibi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝐶 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
7 |
|
breq2 |
⊢ ( 𝑦 = 𝐷 → ( 𝐶 𝑅 𝑦 ↔ 𝐶 𝑅 𝐷 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑦 = 𝐷 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝐷 ) ) |
9 |
8
|
breq2d |
⊢ ( 𝑦 = 𝐷 → ( ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
10 |
7 9
|
bibi12d |
⊢ ( 𝑦 = 𝐷 → ( ( 𝐶 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝐶 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
11 |
6 10
|
rspc2v |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
12 |
2 11
|
mpan9 |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |