Metamath Proof Explorer


Theorem isosctrlem1

Description: Lemma for isosctr . (Contributed by Saveliy Skresanov, 30-Dec-2016)

Ref Expression
Assertion isosctrlem1 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≠ π )

Proof

Step Hyp Ref Expression
1 ax-1cn 1 ∈ ℂ
2 subcl ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ )
3 1 2 mpan ( 𝐴 ∈ ℂ → ( 1 − 𝐴 ) ∈ ℂ )
4 3 adantr ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ∈ ℂ )
5 subeq0 ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) )
6 5 notbid ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ¬ ( 1 − 𝐴 ) = 0 ↔ ¬ 1 = 𝐴 ) )
7 1 6 mpan ( 𝐴 ∈ ℂ → ( ¬ ( 1 − 𝐴 ) = 0 ↔ ¬ 1 = 𝐴 ) )
8 7 biimpar ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ¬ ( 1 − 𝐴 ) = 0 )
9 8 neqned ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ≠ 0 )
10 4 9 logcld ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( 1 − 𝐴 ) ) ∈ ℂ )
11 10 imcld ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ )
12 11 3adant2 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ )
13 3 3ad2ant1 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ∈ ℂ )
14 9 3adant2 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ≠ 0 )
15 releabs ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) )
16 15 adantr ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) )
17 breq2 ( ( abs ‘ 𝐴 ) = 1 → ( ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ↔ ( ℜ ‘ 𝐴 ) ≤ 1 ) )
18 17 adantl ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ↔ ( ℜ ‘ 𝐴 ) ≤ 1 ) )
19 16 18 mpbid ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ 𝐴 ) ≤ 1 )
20 recl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )
21 20 recnd ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ )
22 21 subidd ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = 0 )
23 22 adantr ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = 0 )
24 simpl ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → 𝐴 ∈ ℂ )
25 24 recld ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ )
26 1red ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → 1 ∈ ℝ )
27 simpr ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ℜ ‘ 𝐴 ) ≤ 1 )
28 25 26 25 27 lesub1dd ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) )
29 23 28 eqbrtrrd ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → 0 ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) )
30 19 29 syldan ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → 0 ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) )
31 resub ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) )
32 re1 ( ℜ ‘ 1 ) = 1
33 32 oveq1i ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) )
34 31 33 eqtrdi ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) ) )
35 1 34 mpan ( 𝐴 ∈ ℂ → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) ) )
36 35 adantr ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) ) )
37 30 36 breqtrrd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) )
38 37 3adant3 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) )
39 neghalfpirx - ( π / 2 ) ∈ ℝ*
40 halfpire ( π / 2 ) ∈ ℝ
41 40 rexri ( π / 2 ) ∈ ℝ*
42 argrege0 ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ ( 1 − 𝐴 ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) )
43 iccleub ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) )
44 39 41 42 43 mp3an12i ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ ( 1 − 𝐴 ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) )
45 13 14 38 44 syl3anc ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) )
46 pirp π ∈ ℝ+
47 rphalflt ( π ∈ ℝ+ → ( π / 2 ) < π )
48 46 47 ax-mp ( π / 2 ) < π
49 45 48 jctir ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ∧ ( π / 2 ) < π ) )
50 pire π ∈ ℝ
51 50 a1i ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → π ∈ ℝ )
52 51 rehalfcld ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( π / 2 ) ∈ ℝ )
53 lelttr ( ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ∧ ( π / 2 ) < π ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π ) )
54 11 52 51 53 syl3anc ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ∧ ( π / 2 ) < π ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π ) )
55 54 3adant2 ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ∧ ( π / 2 ) < π ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π ) )
56 49 55 mpd ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π )
57 12 56 ltned ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≠ π )