| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 2 | 
							
								
							 | 
							subcl | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 1  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 1  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  ( 1  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							subeq0 | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 1  −  𝐴 )  =  0  ↔  1  =  𝐴 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							notbid | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ¬  ( 1  −  𝐴 )  =  0  ↔  ¬  1  =  𝐴 ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ¬  ( 1  −  𝐴 )  =  0  ↔  ¬  1  =  𝐴 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimpar | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  ¬  ( 1  −  𝐴 )  =  0 )  | 
						
						
							| 9 | 
							
								8
							 | 
							neqned | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  ( 1  −  𝐴 )  ≠  0 )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							logcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  ( log ‘ ( 1  −  𝐴 ) )  ∈  ℂ )  | 
						
						
							| 11 | 
							
								10
							 | 
							imcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 12 | 
							
								11
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								3
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 1  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 14 | 
							
								9
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 1  −  𝐴 )  ≠  0 )  | 
						
						
							| 15 | 
							
								
							 | 
							releabs | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ≤  ( abs ‘ 𝐴 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ℜ ‘ 𝐴 )  ≤  ( abs ‘ 𝐴 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ( ( ℜ ‘ 𝐴 )  ≤  ( abs ‘ 𝐴 )  ↔  ( ℜ ‘ 𝐴 )  ≤  1 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( ℜ ‘ 𝐴 )  ≤  ( abs ‘ 𝐴 )  ↔  ( ℜ ‘ 𝐴 )  ≤  1 ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							mpbid | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ℜ ‘ 𝐴 )  ≤  1 )  | 
						
						
							| 20 | 
							
								
							 | 
							recl | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 21 | 
							
								20
							 | 
							recnd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 22 | 
							
								21
							 | 
							subidd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  =  0 )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≤  1 )  →  ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  =  0 )  | 
						
						
							| 24 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≤  1 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 25 | 
							
								24
							 | 
							recld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≤  1 )  →  ( ℜ ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 26 | 
							
								
							 | 
							1red | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≤  1 )  →  1  ∈  ℝ )  | 
						
						
							| 27 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≤  1 )  →  ( ℜ ‘ 𝐴 )  ≤  1 )  | 
						
						
							| 28 | 
							
								25 26 25 27
							 | 
							lesub1dd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≤  1 )  →  ( ( ℜ ‘ 𝐴 )  −  ( ℜ ‘ 𝐴 ) )  ≤  ( 1  −  ( ℜ ‘ 𝐴 ) ) )  | 
						
						
							| 29 | 
							
								23 28
							 | 
							eqbrtrrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≤  1 )  →  0  ≤  ( 1  −  ( ℜ ‘ 𝐴 ) ) )  | 
						
						
							| 30 | 
							
								19 29
							 | 
							syldan | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  0  ≤  ( 1  −  ( ℜ ‘ 𝐴 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							resub | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ℜ ‘ ( 1  −  𝐴 ) )  =  ( ( ℜ ‘ 1 )  −  ( ℜ ‘ 𝐴 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							re1 | 
							⊢ ( ℜ ‘ 1 )  =  1  | 
						
						
							| 33 | 
							
								32
							 | 
							oveq1i | 
							⊢ ( ( ℜ ‘ 1 )  −  ( ℜ ‘ 𝐴 ) )  =  ( 1  −  ( ℜ ‘ 𝐴 ) )  | 
						
						
							| 34 | 
							
								31 33
							 | 
							eqtrdi | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ℜ ‘ ( 1  −  𝐴 ) )  =  ( 1  −  ( ℜ ‘ 𝐴 ) ) )  | 
						
						
							| 35 | 
							
								1 34
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ ( 1  −  𝐴 ) )  =  ( 1  −  ( ℜ ‘ 𝐴 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ℜ ‘ ( 1  −  𝐴 ) )  =  ( 1  −  ( ℜ ‘ 𝐴 ) ) )  | 
						
						
							| 37 | 
							
								30 36
							 | 
							breqtrrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  0  ≤  ( ℜ ‘ ( 1  −  𝐴 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  0  ≤  ( ℜ ‘ ( 1  −  𝐴 ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							neghalfpirx | 
							⊢ - ( π  /  2 )  ∈  ℝ*  | 
						
						
							| 40 | 
							
								
							 | 
							halfpire | 
							⊢ ( π  /  2 )  ∈  ℝ  | 
						
						
							| 41 | 
							
								40
							 | 
							rexri | 
							⊢ ( π  /  2 )  ∈  ℝ*  | 
						
						
							| 42 | 
							
								
							 | 
							argrege0 | 
							⊢ ( ( ( 1  −  𝐴 )  ∈  ℂ  ∧  ( 1  −  𝐴 )  ≠  0  ∧  0  ≤  ( ℜ ‘ ( 1  −  𝐴 ) ) )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							iccleub | 
							⊢ ( ( - ( π  /  2 )  ∈  ℝ*  ∧  ( π  /  2 )  ∈  ℝ*  ∧  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) ) )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≤  ( π  /  2 ) )  | 
						
						
							| 44 | 
							
								39 41 42 43
							 | 
							mp3an12i | 
							⊢ ( ( ( 1  −  𝐴 )  ∈  ℂ  ∧  ( 1  −  𝐴 )  ≠  0  ∧  0  ≤  ( ℜ ‘ ( 1  −  𝐴 ) ) )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≤  ( π  /  2 ) )  | 
						
						
							| 45 | 
							
								13 14 38 44
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≤  ( π  /  2 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							pirp | 
							⊢ π  ∈  ℝ+  | 
						
						
							| 47 | 
							
								
							 | 
							rphalflt | 
							⊢ ( π  ∈  ℝ+  →  ( π  /  2 )  <  π )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							ax-mp | 
							⊢ ( π  /  2 )  <  π  | 
						
						
							| 49 | 
							
								45 48
							 | 
							jctir | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≤  ( π  /  2 )  ∧  ( π  /  2 )  <  π ) )  | 
						
						
							| 50 | 
							
								
							 | 
							pire | 
							⊢ π  ∈  ℝ  | 
						
						
							| 51 | 
							
								50
							 | 
							a1i | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  π  ∈  ℝ )  | 
						
						
							| 52 | 
							
								51
							 | 
							rehalfcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  ( π  /  2 )  ∈  ℝ )  | 
						
						
							| 53 | 
							
								
							 | 
							lelttr | 
							⊢ ( ( ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ∈  ℝ  ∧  ( π  /  2 )  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( ( ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≤  ( π  /  2 )  ∧  ( π  /  2 )  <  π )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  <  π ) )  | 
						
						
							| 54 | 
							
								11 52 51 53
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  ( ( ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≤  ( π  /  2 )  ∧  ( π  /  2 )  <  π )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  <  π ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ( ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≤  ( π  /  2 )  ∧  ( π  /  2 )  <  π )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  <  π ) )  | 
						
						
							| 56 | 
							
								49 55
							 | 
							mpd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  <  π )  | 
						
						
							| 57 | 
							
								12 56
							 | 
							ltned | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≠  π )  |