Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( 1 − 𝐴 ) ∈ ℂ ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ∈ ℂ ) |
5 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
6 |
5
|
notbid |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ¬ ( 1 − 𝐴 ) = 0 ↔ ¬ 1 = 𝐴 ) ) |
7 |
1 6
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( ¬ ( 1 − 𝐴 ) = 0 ↔ ¬ 1 = 𝐴 ) ) |
8 |
7
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ¬ ( 1 − 𝐴 ) = 0 ) |
9 |
8
|
neqned |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ≠ 0 ) |
10 |
4 9
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( 1 − 𝐴 ) ) ∈ ℂ ) |
11 |
10
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ ) |
13 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ∈ ℂ ) |
14 |
9
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ≠ 0 ) |
15 |
|
releabs |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) |
17 |
|
breq2 |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ↔ ( ℜ ‘ 𝐴 ) ≤ 1 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ↔ ( ℜ ‘ 𝐴 ) ≤ 1 ) ) |
19 |
16 18
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ 𝐴 ) ≤ 1 ) |
20 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
22 |
21
|
subidd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = 0 ) |
23 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) = 0 ) |
24 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → 𝐴 ∈ ℂ ) |
25 |
24
|
recld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
26 |
|
1red |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → 1 ∈ ℝ ) |
27 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ℜ ‘ 𝐴 ) ≤ 1 ) |
28 |
25 26 25 27
|
lesub1dd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → ( ( ℜ ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
29 |
23 28
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≤ 1 ) → 0 ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
30 |
19 29
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → 0 ≤ ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
31 |
|
resub |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) ) |
32 |
|
re1 |
⊢ ( ℜ ‘ 1 ) = 1 |
33 |
32
|
oveq1i |
⊢ ( ( ℜ ‘ 1 ) − ( ℜ ‘ 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) ) |
34 |
31 33
|
eqtrdi |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
35 |
1 34
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ℜ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( ℜ ‘ 𝐴 ) ) ) |
37 |
30 36
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ) |
38 |
37
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ) |
39 |
|
neghalfpirx |
⊢ - ( π / 2 ) ∈ ℝ* |
40 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
41 |
40
|
rexri |
⊢ ( π / 2 ) ∈ ℝ* |
42 |
|
argrege0 |
⊢ ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ ( 1 − 𝐴 ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
43 |
|
iccleub |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ) |
44 |
39 41 42 43
|
mp3an12i |
⊢ ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ ( 1 − 𝐴 ) ≠ 0 ∧ 0 ≤ ( ℜ ‘ ( 1 − 𝐴 ) ) ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ) |
45 |
13 14 38 44
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ) |
46 |
|
pirp |
⊢ π ∈ ℝ+ |
47 |
|
rphalflt |
⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) |
48 |
46 47
|
ax-mp |
⊢ ( π / 2 ) < π |
49 |
45 48
|
jctir |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ∧ ( π / 2 ) < π ) ) |
50 |
|
pire |
⊢ π ∈ ℝ |
51 |
50
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → π ∈ ℝ ) |
52 |
51
|
rehalfcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( π / 2 ) ∈ ℝ ) |
53 |
|
lelttr |
⊢ ( ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ∧ ( π / 2 ) < π ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π ) ) |
54 |
11 52 51 53
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ∧ ( π / 2 ) < π ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π ) ) |
55 |
54
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ( ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≤ ( π / 2 ) ∧ ( π / 2 ) < π ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π ) ) |
56 |
49 55
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) < π ) |
57 |
12 56
|
ltned |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≠ π ) |