| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  1  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							negsubd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  +  - 𝐴 )  =  ( 1  −  𝐴 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							1rp | 
							⊢ 1  ∈  ℝ+  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  1  ∈  ℝ+ )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ¬  1  =  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( abs ‘ 𝐴 )  =  1 )  | 
						
						
							| 8 | 
							
								1 2 1
							 | 
							sub32d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ( 1  −  𝐴 )  −  1 )  =  ( ( 1  −  1 )  −  𝐴 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							1m1e0 | 
							⊢ ( 1  −  1 )  =  0  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq1i | 
							⊢ ( ( 1  −  1 )  −  𝐴 )  =  ( 0  −  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							df-neg | 
							⊢ - 𝐴  =  ( 0  −  𝐴 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqtr4i | 
							⊢ ( ( 1  −  1 )  −  𝐴 )  =  - 𝐴  | 
						
						
							| 13 | 
							
								8 12
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ( 1  −  𝐴 )  −  1 )  =  - 𝐴 )  | 
						
						
							| 14 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  1  ∈  ℂ )  | 
						
						
							| 15 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							subcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 1  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  −  𝐴 )  ∈  ℂ )  | 
						
						
							| 18 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 19 | 
							
								
							 | 
							subeq0 | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 1  −  𝐴 )  =  0  ↔  1  =  𝐴 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  −  𝐴 )  =  0  ↔  1  =  𝐴 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							biimpd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  −  𝐴 )  =  0  →  1  =  𝐴 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							con3dimp | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  ¬  ( 1  −  𝐴 )  =  0 )  | 
						
						
							| 23 | 
							
								22
							 | 
							neqned | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ¬  1  =  𝐴 )  →  ( 1  −  𝐴 )  ≠  0 )  | 
						
						
							| 24 | 
							
								23
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 1  −  𝐴 )  ≠  0 )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  −  𝐴 )  ≠  0 )  | 
						
						
							| 26 | 
							
								17 25
							 | 
							recrecd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  /  ( 1  /  ( 1  −  𝐴 ) ) )  =  ( 1  −  𝐴 ) )  | 
						
						
							| 27 | 
							
								14 16 24
							 | 
							div2negd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( - 1  /  - ( 1  −  𝐴 ) )  =  ( 1  /  ( 1  −  𝐴 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( - 1  /  - ( 1  −  𝐴 ) )  =  ( 1  /  ( 1  −  𝐴 ) ) )  | 
						
						
							| 29 | 
							
								15
							 | 
							negcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  - 𝐴  ∈  ℂ )  | 
						
						
							| 30 | 
							
								29 16 24
							 | 
							cjdivd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  ( ( ∗ ‘ - 𝐴 )  /  ( ∗ ‘ ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 31 | 
							
								15
							 | 
							cjnegd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ∗ ‘ - 𝐴 )  =  - ( ∗ ‘ 𝐴 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐴  =  0  →  ( abs ‘ 𝐴 )  =  ( abs ‘ 0 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							abs0 | 
							⊢ ( abs ‘ 0 )  =  0  | 
						
						
							| 34 | 
							
								32 33
							 | 
							eqtrdi | 
							⊢ ( 𝐴  =  0  →  ( abs ‘ 𝐴 )  =  0 )  | 
						
						
							| 35 | 
							
								
							 | 
							eqtr2 | 
							⊢ ( ( ( abs ‘ 𝐴 )  =  1  ∧  ( abs ‘ 𝐴 )  =  0 )  →  1  =  0 )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							sylan2 | 
							⊢ ( ( ( abs ‘ 𝐴 )  =  1  ∧  𝐴  =  0 )  →  1  =  0 )  | 
						
						
							| 37 | 
							
								
							 | 
							ax-1ne0 | 
							⊢ 1  ≠  0  | 
						
						
							| 38 | 
							
								
							 | 
							neneq | 
							⊢ ( 1  ≠  0  →  ¬  1  =  0 )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							mp1i | 
							⊢ ( ( ( abs ‘ 𝐴 )  =  1  ∧  𝐴  =  0 )  →  ¬  1  =  0 )  | 
						
						
							| 40 | 
							
								36 39
							 | 
							pm2.65da | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ¬  𝐴  =  0 )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ¬  𝐴  =  0 )  | 
						
						
							| 42 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝐴  ≠  0  ↔  ¬  𝐴  =  0 )  | 
						
						
							| 43 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 1 ↑ 2 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							sq1 | 
							⊢ ( 1 ↑ 2 )  =  1  | 
						
						
							| 45 | 
							
								43 44
							 | 
							eqtrdi | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  1 )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  1 )  | 
						
						
							| 47 | 
							
								
							 | 
							absvalsq | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							eqtr3d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  1  =  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  𝐴  ≠  0 )  →  1  =  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							oveq1d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  𝐴  ≠  0 )  →  ( 1  /  𝐴 )  =  ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  /  𝐴 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 53 | 
							
								52
							 | 
							cjcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  𝐴  ≠  0 )  →  ( ∗ ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 54 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  𝐴  ≠  0 )  →  𝐴  ≠  0 )  | 
						
						
							| 55 | 
							
								53 52 54
							 | 
							divcan3d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  𝐴  ≠  0 )  →  ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  /  𝐴 )  =  ( ∗ ‘ 𝐴 ) )  | 
						
						
							| 56 | 
							
								51 55
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  𝐴  ≠  0 )  →  ( 1  /  𝐴 )  =  ( ∗ ‘ 𝐴 ) )  | 
						
						
							| 57 | 
							
								42 56
							 | 
							syl3an3br | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  𝐴  =  0 )  →  ( 1  /  𝐴 )  =  ( ∗ ‘ 𝐴 ) )  | 
						
						
							| 58 | 
							
								41 57
							 | 
							mpd3an3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( 1  /  𝐴 )  =  ( ∗ ‘ 𝐴 ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							eqcomd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ∗ ‘ 𝐴 )  =  ( 1  /  𝐴 ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ∗ ‘ 𝐴 )  =  ( 1  /  𝐴 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							negeqd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  - ( ∗ ‘ 𝐴 )  =  - ( 1  /  𝐴 ) )  | 
						
						
							| 62 | 
							
								31 61
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ∗ ‘ - 𝐴 )  =  - ( 1  /  𝐴 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							oveq1d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ( ∗ ‘ - 𝐴 )  /  ( ∗ ‘ ( 1  −  𝐴 ) ) )  =  ( - ( 1  /  𝐴 )  /  ( ∗ ‘ ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							cjsub | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ∗ ‘ ( 1  −  𝐴 ) )  =  ( ( ∗ ‘ 1 )  −  ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 65 | 
							
								18 64
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ ( 1  −  𝐴 ) )  =  ( ( ∗ ‘ 1 )  −  ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							1red | 
							⊢ ( 𝐴  ∈  ℂ  →  1  ∈  ℝ )  | 
						
						
							| 67 | 
							
								66
							 | 
							cjred | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ 1 )  =  1 )  | 
						
						
							| 68 | 
							
								67
							 | 
							oveq1d | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( ∗ ‘ 1 )  −  ( ∗ ‘ 𝐴 ) )  =  ( 1  −  ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 69 | 
							
								65 68
							 | 
							eqtrd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ∗ ‘ ( 1  −  𝐴 ) )  =  ( 1  −  ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ∗ ‘ ( 1  −  𝐴 ) )  =  ( 1  −  ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 71 | 
							
								59
							 | 
							oveq2d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( 1  −  ( ∗ ‘ 𝐴 ) )  =  ( 1  −  ( 1  /  𝐴 ) ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ∗ ‘ ( 1  −  𝐴 ) )  =  ( 1  −  ( 1  /  𝐴 ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ∗ ‘ ( 1  −  𝐴 ) )  =  ( 1  −  ( 1  /  𝐴 ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							oveq2d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( - ( 1  /  𝐴 )  /  ( ∗ ‘ ( 1  −  𝐴 ) ) )  =  ( - ( 1  /  𝐴 )  /  ( 1  −  ( 1  /  𝐴 ) ) ) )  | 
						
						
							| 75 | 
							
								30 63 74
							 | 
							3eqtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  ( - ( 1  /  𝐴 )  /  ( 1  −  ( 1  /  𝐴 ) ) ) )  | 
						
						
							| 76 | 
							
								40
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ¬  𝐴  =  0 )  | 
						
						
							| 77 | 
							
								76
							 | 
							neqned | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  𝐴  ≠  0 )  | 
						
						
							| 78 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  1  ∈  ℂ )  | 
						
						
							| 79 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 80 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  𝐴  ≠  0 )  | 
						
						
							| 81 | 
							
								78 79 80
							 | 
							divnegd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  - ( 1  /  𝐴 )  =  ( - 1  /  𝐴 ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							oveq1d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( - ( 1  /  𝐴 )  /  ( 1  −  ( 1  /  𝐴 ) ) )  =  ( ( - 1  /  𝐴 )  /  ( 1  −  ( 1  /  𝐴 ) ) ) )  | 
						
						
							| 83 | 
							
								15 77 82
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( - ( 1  /  𝐴 )  /  ( 1  −  ( 1  /  𝐴 ) ) )  =  ( ( - 1  /  𝐴 )  /  ( 1  −  ( 1  /  𝐴 ) ) ) )  | 
						
						
							| 84 | 
							
								14
							 | 
							negcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  - 1  ∈  ℂ )  | 
						
						
							| 85 | 
							
								84 15 77
							 | 
							divcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( - 1  /  𝐴 )  ∈  ℂ )  | 
						
						
							| 86 | 
							
								15 77
							 | 
							reccld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 1  /  𝐴 )  ∈  ℂ )  | 
						
						
							| 87 | 
							
								14 86
							 | 
							subcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 1  −  ( 1  /  𝐴 ) )  ∈  ℂ )  | 
						
						
							| 88 | 
							
								16 24
							 | 
							cjne0d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ∗ ‘ ( 1  −  𝐴 ) )  ≠  0 )  | 
						
						
							| 89 | 
							
								73 88
							 | 
							eqnetrrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 1  −  ( 1  /  𝐴 ) )  ≠  0 )  | 
						
						
							| 90 | 
							
								85 87 15 89 77
							 | 
							divcan5d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ( 𝐴  ·  ( - 1  /  𝐴 ) )  /  ( 𝐴  ·  ( 1  −  ( 1  /  𝐴 ) ) ) )  =  ( ( - 1  /  𝐴 )  /  ( 1  −  ( 1  /  𝐴 ) ) ) )  | 
						
						
							| 91 | 
							
								84 15 77
							 | 
							divcan2d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 𝐴  ·  ( - 1  /  𝐴 ) )  =  - 1 )  | 
						
						
							| 92 | 
							
								15 14 86
							 | 
							subdid | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 𝐴  ·  ( 1  −  ( 1  /  𝐴 ) ) )  =  ( ( 𝐴  ·  1 )  −  ( 𝐴  ·  ( 1  /  𝐴 ) ) ) )  | 
						
						
							| 93 | 
							
								15
							 | 
							mulridd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 𝐴  ·  1 )  =  𝐴 )  | 
						
						
							| 94 | 
							
								15 77
							 | 
							recidd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 𝐴  ·  ( 1  /  𝐴 ) )  =  1 )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							oveq12d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ( 𝐴  ·  1 )  −  ( 𝐴  ·  ( 1  /  𝐴 ) ) )  =  ( 𝐴  −  1 ) )  | 
						
						
							| 96 | 
							
								92 95
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 𝐴  ·  ( 1  −  ( 1  /  𝐴 ) ) )  =  ( 𝐴  −  1 ) )  | 
						
						
							| 97 | 
							
								91 96
							 | 
							oveq12d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ( 𝐴  ·  ( - 1  /  𝐴 ) )  /  ( 𝐴  ·  ( 1  −  ( 1  /  𝐴 ) ) ) )  =  ( - 1  /  ( 𝐴  −  1 ) ) )  | 
						
						
							| 98 | 
							
								83 90 97
							 | 
							3eqtr2d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( - ( 1  /  𝐴 )  /  ( 1  −  ( 1  /  𝐴 ) ) )  =  ( - 1  /  ( 𝐴  −  1 ) ) )  | 
						
						
							| 99 | 
							
								
							 | 
							subcl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝐴  −  1 )  ∈  ℂ )  | 
						
						
							| 100 | 
							
								99
							 | 
							negnegd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  - - ( 𝐴  −  1 )  =  ( 𝐴  −  1 ) )  | 
						
						
							| 101 | 
							
								
							 | 
							negsubdi2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  - ( 𝐴  −  1 )  =  ( 1  −  𝐴 ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							negeqd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  - - ( 𝐴  −  1 )  =  - ( 1  −  𝐴 ) )  | 
						
						
							| 103 | 
							
								100 102
							 | 
							eqtr3d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝐴  −  1 )  =  - ( 1  −  𝐴 ) )  | 
						
						
							| 104 | 
							
								15 14 103
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 𝐴  −  1 )  =  - ( 1  −  𝐴 ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							oveq2d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( - 1  /  ( 𝐴  −  1 ) )  =  ( - 1  /  - ( 1  −  𝐴 ) ) )  | 
						
						
							| 106 | 
							
								75 98 105
							 | 
							3eqtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  ( - 1  /  - ( 1  −  𝐴 ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  ( - 1  /  - ( 1  −  𝐴 ) ) )  | 
						
						
							| 108 | 
							
								29 16 24
							 | 
							divcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( - 𝐴  /  ( 1  −  𝐴 ) )  ∈  ℂ )  | 
						
						
							| 109 | 
							
								108
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( - 𝐴  /  ( 1  −  𝐴 ) )  ∈  ℂ )  | 
						
						
							| 110 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  | 
						
						
							| 111 | 
							
								109 110
							 | 
							reim0bd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( - 𝐴  /  ( 1  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 112 | 
							
								111
							 | 
							cjred | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  ( - 𝐴  /  ( 1  −  𝐴 ) ) )  | 
						
						
							| 113 | 
							
								112 111
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 114 | 
							
								107 113
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( - 1  /  - ( 1  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 115 | 
							
								28 114
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  /  ( 1  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 116 | 
							
								16 24
							 | 
							recne0d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 1  /  ( 1  −  𝐴 ) )  ≠  0 )  | 
						
						
							| 117 | 
							
								116
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  /  ( 1  −  𝐴 ) )  ≠  0 )  | 
						
						
							| 118 | 
							
								115 117
							 | 
							rereccld | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  /  ( 1  /  ( 1  −  𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 119 | 
							
								26 118
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  −  𝐴 )  ∈  ℝ )  | 
						
						
							| 120 | 
							
								
							 | 
							1red | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  1  ∈  ℝ )  | 
						
						
							| 121 | 
							
								119 120
							 | 
							resubcld | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ( 1  −  𝐴 )  −  1 )  ∈  ℝ )  | 
						
						
							| 122 | 
							
								13 121
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  - 𝐴  ∈  ℝ )  | 
						
						
							| 123 | 
							
								2 122
							 | 
							negrebd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 124 | 
							
								123
							 | 
							absord | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ( abs ‘ 𝐴 )  =  𝐴  ∨  ( abs ‘ 𝐴 )  =  - 𝐴 ) )  | 
						
						
							| 125 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ( ( abs ‘ 𝐴 )  =  𝐴  ↔  1  =  𝐴 ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							biimpd | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ( ( abs ‘ 𝐴 )  =  𝐴  →  1  =  𝐴 ) )  | 
						
						
							| 127 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ( ( abs ‘ 𝐴 )  =  - 𝐴  ↔  1  =  - 𝐴 ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							biimpd | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ( ( abs ‘ 𝐴 )  =  - 𝐴  →  1  =  - 𝐴 ) )  | 
						
						
							| 129 | 
							
								126 128
							 | 
							orim12d | 
							⊢ ( ( abs ‘ 𝐴 )  =  1  →  ( ( ( abs ‘ 𝐴 )  =  𝐴  ∨  ( abs ‘ 𝐴 )  =  - 𝐴 )  →  ( 1  =  𝐴  ∨  1  =  - 𝐴 ) ) )  | 
						
						
							| 130 | 
							
								7 124 129
							 | 
							sylc | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  =  𝐴  ∨  1  =  - 𝐴 ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							ord | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ¬  1  =  𝐴  →  1  =  - 𝐴 ) )  | 
						
						
							| 132 | 
							
								6 131
							 | 
							mpd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  1  =  - 𝐴 )  | 
						
						
							| 133 | 
							
								132 5
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  - 𝐴  ∈  ℝ+ )  | 
						
						
							| 134 | 
							
								5 133
							 | 
							rpaddcld | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  +  - 𝐴 )  ∈  ℝ+ )  | 
						
						
							| 135 | 
							
								3 134
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( 1  −  𝐴 )  ∈  ℝ+ )  | 
						
						
							| 136 | 
							
								135
							 | 
							relogcld | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( log ‘ ( 1  −  𝐴 ) )  ∈  ℝ )  | 
						
						
							| 137 | 
							
								136
							 | 
							reim0d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  =  0 )  | 
						
						
							| 138 | 
							
								133 135
							 | 
							rpdivcld | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( - 𝐴  /  ( 1  −  𝐴 ) )  ∈  ℝ+ )  | 
						
						
							| 139 | 
							
								138
							 | 
							relogcld | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 140 | 
							
								139
							 | 
							reim0d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ℑ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) )  =  0 )  | 
						
						
							| 141 | 
							
								137 140
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  =  0 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  =  ( ℑ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) )  | 
						
						
							| 142 | 
							
								16 24
							 | 
							logcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( log ‘ ( 1  −  𝐴 ) )  ∈  ℂ )  | 
						
						
							| 143 | 
							
								142
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( log ‘ ( 1  −  𝐴 ) )  ∈  ℂ )  | 
						
						
							| 144 | 
							
								143
							 | 
							imcld | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 145 | 
							
								144
							 | 
							recnd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ∈  ℂ )  | 
						
						
							| 146 | 
							
								108
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( - 𝐴  /  ( 1  −  𝐴 ) )  ∈  ℂ )  | 
						
						
							| 147 | 
							
								15 77
							 | 
							negne0d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  - 𝐴  ≠  0 )  | 
						
						
							| 148 | 
							
								29 16 147 24
							 | 
							divne0d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( - 𝐴  /  ( 1  −  𝐴 ) )  ≠  0 )  | 
						
						
							| 149 | 
							
								148
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( - 𝐴  /  ( 1  −  𝐴 ) )  ≠  0 )  | 
						
						
							| 150 | 
							
								146 149
							 | 
							logcld | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ∈  ℂ )  | 
						
						
							| 151 | 
							
								150
							 | 
							imcld | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( ℑ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) )  ∈  ℝ )  | 
						
						
							| 152 | 
							
								151
							 | 
							recnd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( ℑ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) )  ∈  ℂ )  | 
						
						
							| 153 | 
							
								106
							 | 
							fveq2d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( log ‘ ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) )  =  ( log ‘ ( - 1  /  - ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 154 | 
							
								153
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( log ‘ ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) )  =  ( log ‘ ( - 1  /  - ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 155 | 
							
								
							 | 
							logcj | 
							⊢ ( ( ( - 𝐴  /  ( 1  −  𝐴 ) )  ∈  ℂ  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( log ‘ ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) )  =  ( ∗ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) )  | 
						
						
							| 156 | 
							
								108 155
							 | 
							sylan | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( log ‘ ( ∗ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) )  =  ( ∗ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) )  | 
						
						
							| 157 | 
							
								16 24
							 | 
							reccld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( 1  /  ( 1  −  𝐴 ) )  ∈  ℂ )  | 
						
						
							| 158 | 
							
								157 116
							 | 
							logcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) )  ∈  ℂ )  | 
						
						
							| 159 | 
							
								158
							 | 
							negnegd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  - - ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) )  =  ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 160 | 
							
								
							 | 
							isosctrlem1 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≠  π )  | 
						
						
							| 161 | 
							
								
							 | 
							logrec | 
							⊢ ( ( ( 1  −  𝐴 )  ∈  ℂ  ∧  ( 1  −  𝐴 )  ≠  0  ∧  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  ≠  π )  →  ( log ‘ ( 1  −  𝐴 ) )  =  - ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 162 | 
							
								16 24 160 161
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( log ‘ ( 1  −  𝐴 ) )  =  - ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 163 | 
							
								162
							 | 
							negeqd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  - ( log ‘ ( 1  −  𝐴 ) )  =  - - ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 164 | 
							
								27
							 | 
							fveq2d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( log ‘ ( - 1  /  - ( 1  −  𝐴 ) ) )  =  ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 165 | 
							
								159 163 164
							 | 
							3eqtr4rd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( log ‘ ( - 1  /  - ( 1  −  𝐴 ) ) )  =  - ( log ‘ ( 1  −  𝐴 ) ) )  | 
						
						
							| 166 | 
							
								165
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( log ‘ ( - 1  /  - ( 1  −  𝐴 ) ) )  =  - ( log ‘ ( 1  −  𝐴 ) ) )  | 
						
						
							| 167 | 
							
								154 156 166
							 | 
							3eqtr3rd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  - ( log ‘ ( 1  −  𝐴 ) )  =  ( ∗ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) )  | 
						
						
							| 168 | 
							
								167
							 | 
							fveq2d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( ℑ ‘ - ( log ‘ ( 1  −  𝐴 ) ) )  =  ( ℑ ‘ ( ∗ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) ) )  | 
						
						
							| 169 | 
							
								143
							 | 
							imnegd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( ℑ ‘ - ( log ‘ ( 1  −  𝐴 ) ) )  =  - ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) ) )  | 
						
						
							| 170 | 
							
								150
							 | 
							imcjd | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( ℑ ‘ ( ∗ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) )  =  - ( ℑ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) )  | 
						
						
							| 171 | 
							
								168 169 170
							 | 
							3eqtr3d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  - ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  =  - ( ℑ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) )  | 
						
						
							| 172 | 
							
								145 152 171
							 | 
							neg11d | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  ∧  ( ℑ ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) )  ≠  0 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  =  ( ℑ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) )  | 
						
						
							| 173 | 
							
								141 172
							 | 
							pm2.61dane | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  =  1  ∧  ¬  1  =  𝐴 )  →  ( ℑ ‘ ( log ‘ ( 1  −  𝐴 ) ) )  =  ( ℑ ‘ ( log ‘ ( - 𝐴  /  ( 1  −  𝐴 ) ) ) ) )  |