Metamath Proof Explorer


Theorem isose

Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion isose ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Se 𝐴𝑆 Se 𝐵 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
2 isof1o ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴1-1-onto𝐵 )
3 f1ofun ( 𝐻 : 𝐴1-1-onto𝐵 → Fun 𝐻 )
4 vex 𝑥 ∈ V
5 4 funimaex ( Fun 𝐻 → ( 𝐻𝑥 ) ∈ V )
6 2 3 5 3syl ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻𝑥 ) ∈ V )
7 1 6 isoselem ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Se 𝐴𝑆 Se 𝐵 ) )
8 isocnv ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) )
9 isof1o ( 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → 𝐻 : 𝐵1-1-onto𝐴 )
10 f1ofun ( 𝐻 : 𝐵1-1-onto𝐴 → Fun 𝐻 )
11 4 funimaex ( Fun 𝐻 → ( 𝐻𝑥 ) ∈ V )
12 8 9 10 11 4syl ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻𝑥 ) ∈ V )
13 8 12 isoselem ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Se 𝐵𝑅 Se 𝐴 ) )
14 7 13 impbid ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Se 𝐴𝑆 Se 𝐵 ) )