Step |
Hyp |
Ref |
Expression |
1 |
|
isofrlem.1 |
⊢ ( 𝜑 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
2 |
|
isofrlem.2 |
⊢ ( 𝜑 → ( 𝐻 “ 𝑥 ) ∈ V ) |
3 |
|
dfse2 |
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) |
4 |
3
|
biimpi |
⊢ ( 𝑅 Se 𝐴 → ∀ 𝑧 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) |
5 |
4
|
r19.21bi |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) |
6 |
5
|
expcom |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝑅 Se 𝐴 → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑅 Se 𝐴 → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) ) |
8 |
|
imaeq2 |
⊢ ( 𝑥 = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) → ( 𝐻 “ 𝑥 ) = ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑥 = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) → ( ( 𝐻 “ 𝑥 ) ∈ V ↔ ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑥 = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) → ( ( 𝜑 → ( 𝐻 “ 𝑥 ) ∈ V ) ↔ ( 𝜑 → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) ) |
11 |
10 2
|
vtoclg |
⊢ ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V → ( 𝜑 → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) |
12 |
11
|
com12 |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) |
14 |
|
isoini |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ) |
15 |
1 14
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ) |
16 |
15
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ↔ ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
17 |
13 16
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V → ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
18 |
7 17
|
syld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑅 Se 𝐴 → ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
19 |
18
|
ralrimdva |
⊢ ( 𝜑 → ( 𝑅 Se 𝐴 → ∀ 𝑧 ∈ 𝐴 ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
20 |
|
isof1o |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
21 |
|
f1ofn |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Fn 𝐴 ) |
22 |
|
sneq |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑧 ) → { 𝑦 } = { ( 𝐻 ‘ 𝑧 ) } ) |
23 |
22
|
imaeq2d |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑧 ) → ( ◡ 𝑆 “ { 𝑦 } ) = ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) |
24 |
23
|
ineq2d |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑧 ) → ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑧 ) → ( ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ↔ ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
26 |
25
|
ralrn |
⊢ ( 𝐻 Fn 𝐴 → ( ∀ 𝑦 ∈ ran 𝐻 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
27 |
1 20 21 26
|
4syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐻 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
28 |
|
f1ofo |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –onto→ 𝐵 ) |
29 |
|
forn |
⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ran 𝐻 = 𝐵 ) |
30 |
1 20 28 29
|
4syl |
⊢ ( 𝜑 → ran 𝐻 = 𝐵 ) |
31 |
30
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐻 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ) ) |
32 |
27 31
|
bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ) ) |
33 |
19 32
|
sylibd |
⊢ ( 𝜑 → ( 𝑅 Se 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ) ) |
34 |
|
dfse2 |
⊢ ( 𝑆 Se 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ) |
35 |
33 34
|
syl6ibr |
⊢ ( 𝜑 → ( 𝑅 Se 𝐴 → 𝑆 Se 𝐵 ) ) |