Description: An isomorphism preserves the property of being a strict total order. (Contributed by Stefan O'Rear, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | isoso | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isocnv | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) | |
2 | isosolem | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ( 𝑅 Or 𝐴 → 𝑆 Or 𝐵 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴 → 𝑆 Or 𝐵 ) ) |
4 | isosolem | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Or 𝐵 → 𝑅 Or 𝐴 ) ) | |
5 | 3 4 | impbid | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |