Description: An isomorphism preserves the property of being a strict total order. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isoso | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) | |
| 2 | isosolem | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) → ( 𝑅 Or 𝐴 → 𝑆 Or 𝐵 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴 → 𝑆 Or 𝐵 ) ) |
| 4 | isosolem | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Or 𝐵 → 𝑅 Or 𝐴 ) ) | |
| 5 | 3 4 | impbid | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵 ) ) |