Step |
Hyp |
Ref |
Expression |
1 |
|
isopolem |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Po 𝐵 → 𝑅 Po 𝐴 ) ) |
2 |
|
isof1o |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
3 |
|
f1of |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
4 |
|
ffvelrn |
⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑐 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ) |
5 |
4
|
ex |
⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( 𝑐 ∈ 𝐴 → ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ) ) |
6 |
|
ffvelrn |
⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑑 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) |
7 |
6
|
ex |
⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( 𝑑 ∈ 𝐴 → ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) ) |
8 |
5 7
|
anim12d |
⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) ) ) |
9 |
2 3 8
|
3syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) ) ) |
10 |
9
|
imp |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) ) |
11 |
|
breq1 |
⊢ ( 𝑎 = ( 𝐻 ‘ 𝑐 ) → ( 𝑎 𝑆 𝑏 ↔ ( 𝐻 ‘ 𝑐 ) 𝑆 𝑏 ) ) |
12 |
|
eqeq1 |
⊢ ( 𝑎 = ( 𝐻 ‘ 𝑐 ) → ( 𝑎 = 𝑏 ↔ ( 𝐻 ‘ 𝑐 ) = 𝑏 ) ) |
13 |
|
breq2 |
⊢ ( 𝑎 = ( 𝐻 ‘ 𝑐 ) → ( 𝑏 𝑆 𝑎 ↔ 𝑏 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
14 |
11 12 13
|
3orbi123d |
⊢ ( 𝑎 = ( 𝐻 ‘ 𝑐 ) → ( ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ↔ ( ( 𝐻 ‘ 𝑐 ) 𝑆 𝑏 ∨ ( 𝐻 ‘ 𝑐 ) = 𝑏 ∨ 𝑏 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
15 |
|
breq2 |
⊢ ( 𝑏 = ( 𝐻 ‘ 𝑑 ) → ( ( 𝐻 ‘ 𝑐 ) 𝑆 𝑏 ↔ ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) |
16 |
|
eqeq2 |
⊢ ( 𝑏 = ( 𝐻 ‘ 𝑑 ) → ( ( 𝐻 ‘ 𝑐 ) = 𝑏 ↔ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ) ) |
17 |
|
breq1 |
⊢ ( 𝑏 = ( 𝐻 ‘ 𝑑 ) → ( 𝑏 𝑆 ( 𝐻 ‘ 𝑐 ) ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
18 |
15 16 17
|
3orbi123d |
⊢ ( 𝑏 = ( 𝐻 ‘ 𝑑 ) → ( ( ( 𝐻 ‘ 𝑐 ) 𝑆 𝑏 ∨ ( 𝐻 ‘ 𝑐 ) = 𝑏 ∨ 𝑏 𝑆 ( 𝐻 ‘ 𝑐 ) ) ↔ ( ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
19 |
14 18
|
rspc2v |
⊢ ( ( ( 𝐻 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑑 ) ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) → ( ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
20 |
10 19
|
syl |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) → ( ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
21 |
|
isorel |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑐 𝑅 𝑑 ↔ ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ) ) |
22 |
|
f1of1 |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –1-1→ 𝐵 ) |
23 |
2 22
|
syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1→ 𝐵 ) |
24 |
|
f1fveq |
⊢ ( ( 𝐻 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ↔ 𝑐 = 𝑑 ) ) |
25 |
23 24
|
sylan |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ↔ 𝑐 = 𝑑 ) ) |
26 |
25
|
bicomd |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑐 = 𝑑 ↔ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ) ) |
27 |
|
isorel |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑐 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
28 |
27
|
ancom2s |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑑 𝑅 𝑐 ↔ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
29 |
21 26 28
|
3orbi123d |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ↔ ( ( 𝐻 ‘ 𝑐 ) 𝑆 ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ∨ ( 𝐻 ‘ 𝑑 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
30 |
20 29
|
sylibrd |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) → ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ) ) |
31 |
30
|
ralrimdvva |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) → ∀ 𝑐 ∈ 𝐴 ∀ 𝑑 ∈ 𝐴 ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ) ) |
32 |
1 31
|
anim12d |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑆 Po 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ) → ( 𝑅 Po 𝐴 ∧ ∀ 𝑐 ∈ 𝐴 ∀ 𝑑 ∈ 𝐴 ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ) ) ) |
33 |
|
df-so |
⊢ ( 𝑆 Or 𝐵 ↔ ( 𝑆 Po 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 𝑆 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑆 𝑎 ) ) ) |
34 |
|
df-so |
⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑐 ∈ 𝐴 ∀ 𝑑 ∈ 𝐴 ( 𝑐 𝑅 𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑 𝑅 𝑐 ) ) ) |
35 |
32 33 34
|
3imtr4g |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Or 𝐵 → 𝑅 Or 𝐴 ) ) |