Metamath Proof Explorer


Theorem isoval

Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 21-May-2020)

Ref Expression
Hypotheses invfval.b 𝐵 = ( Base ‘ 𝐶 )
invfval.n 𝑁 = ( Inv ‘ 𝐶 )
invfval.c ( 𝜑𝐶 ∈ Cat )
invfval.x ( 𝜑𝑋𝐵 )
invfval.y ( 𝜑𝑌𝐵 )
isoval.n 𝐼 = ( Iso ‘ 𝐶 )
Assertion isoval ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) )

Proof

Step Hyp Ref Expression
1 invfval.b 𝐵 = ( Base ‘ 𝐶 )
2 invfval.n 𝑁 = ( Inv ‘ 𝐶 )
3 invfval.c ( 𝜑𝐶 ∈ Cat )
4 invfval.x ( 𝜑𝑋𝐵 )
5 invfval.y ( 𝜑𝑌𝐵 )
6 isoval.n 𝐼 = ( Iso ‘ 𝐶 )
7 isofval ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ ( Inv ‘ 𝐶 ) ) )
8 3 7 syl ( 𝜑 → ( Iso ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ ( Inv ‘ 𝐶 ) ) )
9 2 coeq2i ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ ( Inv ‘ 𝐶 ) )
10 8 6 9 3eqtr4g ( 𝜑𝐼 = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) )
11 10 oveqd ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) 𝑌 ) )
12 eqid ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) )
13 ovex ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∈ V
14 13 inex1 ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ∈ V
15 12 14 fnmpoi ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) Fn ( 𝐵 × 𝐵 )
16 eqid ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 )
17 1 2 3 4 5 16 invffval ( 𝜑𝑁 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) )
18 17 fneq1d ( 𝜑 → ( 𝑁 Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) Fn ( 𝐵 × 𝐵 ) ) )
19 15 18 mpbiri ( 𝜑𝑁 Fn ( 𝐵 × 𝐵 ) )
20 4 5 opelxpd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐵 × 𝐵 ) )
21 fvco2 ( ( 𝑁 Fn ( 𝐵 × 𝐵 ) ∧ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐵 × 𝐵 ) ) → ( ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) )
22 19 20 21 syl2anc ( 𝜑 → ( ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ) )
23 df-ov ( 𝑋 ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) 𝑌 ) = ( ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ‘ ⟨ 𝑋 , 𝑌 ⟩ )
24 ovex ( 𝑋 𝑁 𝑌 ) ∈ V
25 dmeq ( 𝑧 = ( 𝑋 𝑁 𝑌 ) → dom 𝑧 = dom ( 𝑋 𝑁 𝑌 ) )
26 eqid ( 𝑧 ∈ V ↦ dom 𝑧 ) = ( 𝑧 ∈ V ↦ dom 𝑧 )
27 24 dmex dom ( 𝑋 𝑁 𝑌 ) ∈ V
28 25 26 27 fvmpt ( ( 𝑋 𝑁 𝑌 ) ∈ V → ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑋 𝑁 𝑌 ) ) = dom ( 𝑋 𝑁 𝑌 ) )
29 24 28 ax-mp ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑋 𝑁 𝑌 ) ) = dom ( 𝑋 𝑁 𝑌 )
30 df-ov ( 𝑋 𝑁 𝑌 ) = ( 𝑁 ‘ ⟨ 𝑋 , 𝑌 ⟩ )
31 30 fveq2i ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑋 𝑁 𝑌 ) ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) )
32 29 31 eqtr3i dom ( 𝑋 𝑁 𝑌 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) )
33 22 23 32 3eqtr4g ( 𝜑 → ( 𝑋 ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) )
34 11 33 eqtrd ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) )