Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
isoval.n |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
7 |
|
isofval |
⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ ( Inv ‘ 𝐶 ) ) ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ( Iso ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ ( Inv ‘ 𝐶 ) ) ) |
9 |
2
|
coeq2i |
⊢ ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ ( Inv ‘ 𝐶 ) ) |
10 |
8 6 9
|
3eqtr4g |
⊢ ( 𝜑 → 𝐼 = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ) |
11 |
10
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) 𝑌 ) ) |
12 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) |
13 |
|
ovex |
⊢ ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∈ V |
14 |
13
|
inex1 |
⊢ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ∈ V |
15 |
12 14
|
fnmpoi |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) Fn ( 𝐵 × 𝐵 ) |
16 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
17 |
1 2 3 4 5 16
|
invffval |
⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) ) |
18 |
17
|
fneq1d |
⊢ ( 𝜑 → ( 𝑁 Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
19 |
15 18
|
mpbiri |
⊢ ( 𝜑 → 𝑁 Fn ( 𝐵 × 𝐵 ) ) |
20 |
4 5
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
21 |
|
fvco2 |
⊢ ( ( 𝑁 Fn ( 𝐵 × 𝐵 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) → ( ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
23 |
|
df-ov |
⊢ ( 𝑋 ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) 𝑌 ) = ( ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ‘ 〈 𝑋 , 𝑌 〉 ) |
24 |
|
ovex |
⊢ ( 𝑋 𝑁 𝑌 ) ∈ V |
25 |
|
dmeq |
⊢ ( 𝑧 = ( 𝑋 𝑁 𝑌 ) → dom 𝑧 = dom ( 𝑋 𝑁 𝑌 ) ) |
26 |
|
eqid |
⊢ ( 𝑧 ∈ V ↦ dom 𝑧 ) = ( 𝑧 ∈ V ↦ dom 𝑧 ) |
27 |
24
|
dmex |
⊢ dom ( 𝑋 𝑁 𝑌 ) ∈ V |
28 |
25 26 27
|
fvmpt |
⊢ ( ( 𝑋 𝑁 𝑌 ) ∈ V → ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑋 𝑁 𝑌 ) ) = dom ( 𝑋 𝑁 𝑌 ) ) |
29 |
24 28
|
ax-mp |
⊢ ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑋 𝑁 𝑌 ) ) = dom ( 𝑋 𝑁 𝑌 ) |
30 |
|
df-ov |
⊢ ( 𝑋 𝑁 𝑌 ) = ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) |
31 |
30
|
fveq2i |
⊢ ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑋 𝑁 𝑌 ) ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
32 |
29 31
|
eqtr3i |
⊢ dom ( 𝑋 𝑁 𝑌 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
33 |
22 23 32
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑋 ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
34 |
11 33
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |