Metamath Proof Explorer


Theorem isowe

Description: An isomorphism preserves the property of being a well-ordering. Proposition 6.32(3) of TakeutiZaring p. 33. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion isowe ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 We 𝐴𝑆 We 𝐵 ) )

Proof

Step Hyp Ref Expression
1 isofr ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Fr 𝐴𝑆 Fr 𝐵 ) )
2 isoso ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 Or 𝐴𝑆 Or 𝐵 ) )
3 1 2 anbi12d ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑅 Fr 𝐴𝑅 Or 𝐴 ) ↔ ( 𝑆 Fr 𝐵𝑆 Or 𝐵 ) ) )
4 df-we ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴𝑅 Or 𝐴 ) )
5 df-we ( 𝑆 We 𝐵 ↔ ( 𝑆 Fr 𝐵𝑆 Or 𝐵 ) )
6 3 4 5 3bitr4g ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑅 We 𝐴𝑆 We 𝐵 ) )