| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 2 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐻 “ 𝑥 ) = ( 𝐻 “ 𝑦 ) ) |
| 3 |
2
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 “ 𝑥 ) ∈ V ↔ ( 𝐻 “ 𝑦 ) ∈ V ) ) |
| 4 |
3
|
spvv |
⊢ ( ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V → ( 𝐻 “ 𝑦 ) ∈ V ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( 𝐻 “ 𝑦 ) ∈ V ) |
| 6 |
1 5
|
isofrlem |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
| 7 |
|
isosolem |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Or 𝐵 → 𝑅 Or 𝐴 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( 𝑆 Or 𝐵 → 𝑅 Or 𝐴 ) ) |
| 9 |
6 8
|
anim12d |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( ( 𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵 ) → ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) ) |
| 10 |
|
df-we |
⊢ ( 𝑆 We 𝐵 ↔ ( 𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵 ) ) |
| 11 |
|
df-we |
⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) |
| 12 |
9 10 11
|
3imtr4g |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( 𝑆 We 𝐵 → 𝑅 We 𝐴 ) ) |