| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpfval.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | isperf | ⊢ ( 𝐽  ∈  Perf  ↔  ( 𝐽  ∈  Top  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  =  𝑋 ) ) | 
						
							| 3 |  | ssid | ⊢ 𝑋  ⊆  𝑋 | 
						
							| 4 | 1 | lpss | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  ⊆  𝑋 )  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ⊆  𝑋 ) | 
						
							| 5 | 3 4 | mpan2 | ⊢ ( 𝐽  ∈  Top  →  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ⊆  𝑋 ) | 
						
							| 6 |  | eqss | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  =  𝑋  ↔  ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ⊆  𝑋  ∧  𝑋  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) | 
						
							| 7 | 6 | baib | ⊢ ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ⊆  𝑋  →  ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  =  𝑋  ↔  𝑋  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝐽  ∈  Top  →  ( ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  =  𝑋  ↔  𝑋  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) | 
						
							| 9 | 8 | pm5.32i | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  =  𝑋 )  ↔  ( 𝐽  ∈  Top  ∧  𝑋  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) | 
						
							| 10 | 2 9 | bitri | ⊢ ( 𝐽  ∈  Perf  ↔  ( 𝐽  ∈  Top  ∧  𝑋  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) |