| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpfval.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | isperf2 | ⊢ ( 𝐽  ∈  Perf  ↔  ( 𝐽  ∈  Top  ∧  𝑋  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) | 
						
							| 3 |  | dfss3 | ⊢ ( 𝑋  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  ∀ 𝑥  ∈  𝑋 𝑥  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) | 
						
							| 4 | 1 | maxlp | ⊢ ( 𝐽  ∈  Top  →  ( 𝑥  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  ( 𝑥  ∈  𝑋  ∧  ¬  { 𝑥 }  ∈  𝐽 ) ) ) | 
						
							| 5 | 4 | baibd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  ¬  { 𝑥 }  ∈  𝐽 ) ) | 
						
							| 6 | 5 | ralbidva | ⊢ ( 𝐽  ∈  Top  →  ( ∀ 𝑥  ∈  𝑋 𝑥  ∈  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  ∀ 𝑥  ∈  𝑋 ¬  { 𝑥 }  ∈  𝐽 ) ) | 
						
							| 7 | 3 6 | bitrid | ⊢ ( 𝐽  ∈  Top  →  ( 𝑋  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 )  ↔  ∀ 𝑥  ∈  𝑋 ¬  { 𝑥 }  ∈  𝐽 ) ) | 
						
							| 8 | 7 | pm5.32i | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑋  ⊆  ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) )  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  𝑋 ¬  { 𝑥 }  ∈  𝐽 ) ) | 
						
							| 9 | 2 8 | bitri | ⊢ ( 𝐽  ∈  Perf  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  𝑋 ¬  { 𝑥 }  ∈  𝐽 ) ) |