| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ispgp.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
ispgp.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
simpr |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
| 4 |
3
|
fveq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
| 5 |
4 1
|
eqtr4di |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( Base ‘ 𝑔 ) = 𝑋 ) |
| 6 |
3
|
fveq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( od ‘ 𝑔 ) = ( od ‘ 𝐺 ) ) |
| 7 |
6 2
|
eqtr4di |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( od ‘ 𝑔 ) = 𝑂 ) |
| 8 |
7
|
fveq1d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑂 ‘ 𝑥 ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → 𝑝 = 𝑃 ) |
| 10 |
9
|
oveq1d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( 𝑝 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 11 |
8 10
|
eqeq12d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ↔ ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 12 |
11
|
rexbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 13 |
5 12
|
raleqbidv |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 14 |
|
df-pgp |
⊢ pGrp = { 〈 𝑝 , 𝑔 〉 ∣ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) } |
| 15 |
13 14
|
brab2a |
⊢ ( 𝑃 pGrp 𝐺 ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 16 |
|
df-3an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ↔ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 17 |
15 16
|
bitr4i |
⊢ ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( 𝑂 ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |