| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isphld.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑊 ) ) | 
						
							| 2 |  | isphld.a | ⊢ ( 𝜑  →   +   =  ( +g ‘ 𝑊 ) ) | 
						
							| 3 |  | isphld.s | ⊢ ( 𝜑  →   ·   =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 4 |  | isphld.i | ⊢ ( 𝜑  →  𝐼  =  ( ·𝑖 ‘ 𝑊 ) ) | 
						
							| 5 |  | isphld.z | ⊢ ( 𝜑  →   0   =  ( 0g ‘ 𝑊 ) ) | 
						
							| 6 |  | isphld.f | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | isphld.k | ⊢ ( 𝜑  →  𝐾  =  ( Base ‘ 𝐹 ) ) | 
						
							| 8 |  | isphld.p | ⊢ ( 𝜑  →   ⨣   =  ( +g ‘ 𝐹 ) ) | 
						
							| 9 |  | isphld.t | ⊢ ( 𝜑  →   ×   =  ( .r ‘ 𝐹 ) ) | 
						
							| 10 |  | isphld.c | ⊢ ( 𝜑  →   ∗   =  ( *𝑟 ‘ 𝐹 ) ) | 
						
							| 11 |  | isphld.o | ⊢ ( 𝜑  →  𝑂  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 12 |  | isphld.l | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 13 |  | isphld.r | ⊢ ( 𝜑  →  𝐹  ∈  *-Ring ) | 
						
							| 14 |  | isphld.cl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥 𝐼 𝑦 )  ∈  𝐾 ) | 
						
							| 15 |  | isphld.d | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐾  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( ( 𝑞  ·  𝑥 )  +  𝑦 ) 𝐼 𝑧 )  =  ( ( 𝑞  ×  ( 𝑥 𝐼 𝑧 ) )  ⨣  ( 𝑦 𝐼 𝑧 ) ) ) | 
						
							| 16 |  | isphld.ns | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧  ( 𝑥 𝐼 𝑥 )  =  𝑂 )  →  𝑥  =   0  ) | 
						
							| 17 |  | isphld.cj | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  (  ∗  ‘ ( 𝑥 𝐼 𝑦 ) )  =  ( 𝑦 𝐼 𝑥 ) ) | 
						
							| 18 | 6 13 | eqeltrrd | ⊢ ( 𝜑  →  ( Scalar ‘ 𝑊 )  ∈  *-Ring ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 20 | 19 | cbvmptv | ⊢ ( 𝑦  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  =  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 21 | 14 | 3expib | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥 𝐼 𝑦 )  ∈  𝐾 ) ) | 
						
							| 22 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑉  ↔  𝑥  ∈  ( Base ‘ 𝑊 ) ) ) | 
						
							| 23 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑉  ↔  𝑦  ∈  ( Base ‘ 𝑊 ) ) ) | 
						
							| 24 | 22 23 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 25 | 4 | oveqd | ⊢ ( 𝜑  →  ( 𝑥 𝐼 𝑦 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 26 | 6 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 27 | 7 26 | eqtrd | ⊢ ( 𝜑  →  𝐾  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 28 | 25 27 | eleq12d | ⊢ ( 𝜑  →  ( ( 𝑥 𝐼 𝑦 )  ∈  𝐾  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 29 | 21 24 28 | 3imtr3d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 30 | 29 | impl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 31 | 30 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 32 |  | oveq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 33 | 32 | cbvmptv | ⊢ ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 34 | 31 33 | fmptd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 35 | 34 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 37 | 36 | mpteq2dv | ⊢ ( 𝑦  =  𝑧  →  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 38 | 37 | feq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) )  ↔  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 39 | 38 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 40 | 35 39 | sylan | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 41 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 42 | 15 | 3exp | ⊢ ( 𝜑  →  ( 𝑞  ∈  𝐾  →  ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( ( ( 𝑞  ·  𝑥 )  +  𝑦 ) 𝐼 𝑧 )  =  ( ( 𝑞  ×  ( 𝑥 𝐼 𝑧 ) )  ⨣  ( 𝑦 𝐼 𝑧 ) ) ) ) ) | 
						
							| 43 | 27 | eleq2d | ⊢ ( 𝜑  →  ( 𝑞  ∈  𝐾  ↔  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 44 |  | 3anrot | ⊢ ( ( 𝑧  ∈  𝑉  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ↔  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) ) | 
						
							| 45 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑉  ↔  𝑧  ∈  ( Base ‘ 𝑊 ) ) ) | 
						
							| 46 | 45 22 23 | 3anbi123d | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  𝑉  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 47 | 44 46 | bitr3id | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  ↔  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 48 | 3 | oveqd | ⊢ ( 𝜑  →  ( 𝑞  ·  𝑥 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 49 |  | eqidd | ⊢ ( 𝜑  →  𝑦  =  𝑦 ) | 
						
							| 50 | 2 48 49 | oveq123d | ⊢ ( 𝜑  →  ( ( 𝑞  ·  𝑥 )  +  𝑦 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 51 |  | eqidd | ⊢ ( 𝜑  →  𝑧  =  𝑧 ) | 
						
							| 52 | 4 50 51 | oveq123d | ⊢ ( 𝜑  →  ( ( ( 𝑞  ·  𝑥 )  +  𝑦 ) 𝐼 𝑧 )  =  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 53 | 6 | fveq2d | ⊢ ( 𝜑  →  ( +g ‘ 𝐹 )  =  ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 54 | 8 53 | eqtrd | ⊢ ( 𝜑  →   ⨣   =  ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 55 | 6 | fveq2d | ⊢ ( 𝜑  →  ( .r ‘ 𝐹 )  =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 56 | 9 55 | eqtrd | ⊢ ( 𝜑  →   ×   =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 57 |  | eqidd | ⊢ ( 𝜑  →  𝑞  =  𝑞 ) | 
						
							| 58 | 4 | oveqd | ⊢ ( 𝜑  →  ( 𝑥 𝐼 𝑧 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 59 | 56 57 58 | oveq123d | ⊢ ( 𝜑  →  ( 𝑞  ×  ( 𝑥 𝐼 𝑧 ) )  =  ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 60 | 4 | oveqd | ⊢ ( 𝜑  →  ( 𝑦 𝐼 𝑧 )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 61 | 54 59 60 | oveq123d | ⊢ ( 𝜑  →  ( ( 𝑞  ×  ( 𝑥 𝐼 𝑧 ) )  ⨣  ( 𝑦 𝐼 𝑧 ) )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 62 | 52 61 | eqeq12d | ⊢ ( 𝜑  →  ( ( ( ( 𝑞  ·  𝑥 )  +  𝑦 ) 𝐼 𝑧 )  =  ( ( 𝑞  ×  ( 𝑥 𝐼 𝑧 ) )  ⨣  ( 𝑦 𝐼 𝑧 ) )  ↔  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) | 
						
							| 63 | 47 62 | imbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( ( ( 𝑞  ·  𝑥 )  +  𝑦 ) 𝐼 𝑧 )  =  ( ( 𝑞  ×  ( 𝑥 𝐼 𝑧 ) )  ⨣  ( 𝑦 𝐼 𝑧 ) ) )  ↔  ( ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) | 
						
							| 64 | 42 43 63 | 3imtr3d | ⊢ ( 𝜑  →  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  →  ( ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) | 
						
							| 65 | 64 | imp31 | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 66 | 65 | 3exp2 | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝑧  ∈  ( Base ‘ 𝑊 )  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  →  ( 𝑦  ∈  ( Base ‘ 𝑊 )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) ) | 
						
							| 67 | 66 | impancom | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  →  ( 𝑦  ∈  ( Base ‘ 𝑊 )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) ) | 
						
							| 68 | 67 | 3imp2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 69 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 70 | 12 69 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  →  𝑊  ∈  LMod ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  𝑊  ∈  LMod ) | 
						
							| 73 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 74 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 75 | 73 74 | lss1 | ⊢ ( 𝑊  ∈  LMod  →  ( Base ‘ 𝑊 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 76 | 72 75 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( Base ‘ 𝑊 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 77 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 78 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 79 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 80 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 81 | 77 78 79 80 74 | lsscl | ⊢ ( ( ( Base ‘ 𝑊 )  ∈  ( LSubSp ‘ 𝑊 )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 82 | 76 81 | sylancom | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 83 |  | oveq1 | ⊢ ( 𝑤  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 )  →  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 84 |  | eqid | ⊢ ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  =  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 85 |  | ovex | ⊢ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  ∈  V | 
						
							| 86 | 83 84 85 | fvmpt3i | ⊢ ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ 𝑊 )  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) )  =  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 87 | 82 86 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) )  =  ( ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 88 |  | simpr2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 89 |  | oveq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 90 | 89 84 85 | fvmpt3i | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑊 )  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 91 | 88 90 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 92 | 91 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) )  =  ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 93 |  | simpr3 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 94 |  | oveq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 95 | 94 84 85 | fvmpt3i | ⊢ ( 𝑦  ∈  ( Base ‘ 𝑊 )  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 96 | 93 95 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 97 | 92 96 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 98 | 68 87 97 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) | 
						
							| 99 | 98 | ralrimivvva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  →  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) | 
						
							| 100 | 77 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  ( Scalar ‘ 𝑊 )  ∈  Ring ) | 
						
							| 101 |  | rlmlmod | ⊢ ( ( Scalar ‘ 𝑊 )  ∈  Ring  →  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) )  ∈  LMod ) | 
						
							| 102 | 70 100 101 | 3syl | ⊢ ( 𝜑  →  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) )  ∈  LMod ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  →  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) )  ∈  LMod ) | 
						
							| 104 |  | rlmbas | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 105 |  | fvex | ⊢ ( Scalar ‘ 𝑊 )  ∈  V | 
						
							| 106 |  | rlmsca | ⊢ ( ( Scalar ‘ 𝑊 )  ∈  V  →  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 107 | 105 106 | ax-mp | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 108 |  | rlmplusg | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) )  =  ( +g ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 109 |  | rlmvsca | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 110 | 73 104 77 107 78 79 108 80 109 | islmhm2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) )  ∈  LMod )  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 )  ∧  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 111 | 71 103 110 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 )  ∧  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) )  =  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 112 | 40 41 99 111 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 113 | 112 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ( Base ‘ 𝑊 ) ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 114 |  | oveq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 115 | 114 | mpteq2dv | ⊢ ( 𝑧  =  𝑥  →  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  =  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 116 | 115 | eleq1d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )  ↔  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) | 
						
							| 117 | 116 | rspccva | ⊢ ( ( ∀ 𝑧  ∈  ( Base ‘ 𝑊 ) ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 118 | 113 117 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑤  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 119 | 20 118 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑦  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 120 | 16 | 3exp | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑉  →  ( ( 𝑥 𝐼 𝑥 )  =  𝑂  →  𝑥  =   0  ) ) ) | 
						
							| 121 | 4 | oveqd | ⊢ ( 𝜑  →  ( 𝑥 𝐼 𝑥 )  =  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 122 | 6 | fveq2d | ⊢ ( 𝜑  →  ( 0g ‘ 𝐹 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 123 | 11 122 | eqtrd | ⊢ ( 𝜑  →  𝑂  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 124 | 121 123 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝑥 𝐼 𝑥 )  =  𝑂  ↔  ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 125 | 5 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑥  =   0   ↔  𝑥  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 126 | 124 125 | imbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑥 𝐼 𝑥 )  =  𝑂  →  𝑥  =   0  )  ↔  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  →  𝑥  =  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 127 | 120 22 126 | 3imtr3d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝑊 )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  →  𝑥  =  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 128 | 127 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  →  𝑥  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 129 | 17 | 3expib | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  (  ∗  ‘ ( 𝑥 𝐼 𝑦 ) )  =  ( 𝑦 𝐼 𝑥 ) ) ) | 
						
							| 130 | 6 | fveq2d | ⊢ ( 𝜑  →  ( *𝑟 ‘ 𝐹 )  =  ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 131 | 10 130 | eqtrd | ⊢ ( 𝜑  →   ∗   =  ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 132 | 131 25 | fveq12d | ⊢ ( 𝜑  →  (  ∗  ‘ ( 𝑥 𝐼 𝑦 ) )  =  ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 133 | 4 | oveqd | ⊢ ( 𝜑  →  ( 𝑦 𝐼 𝑥 )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 134 | 132 133 | eqeq12d | ⊢ ( 𝜑  →  ( (  ∗  ‘ ( 𝑥 𝐼 𝑦 ) )  =  ( 𝑦 𝐼 𝑥 )  ↔  ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 135 | 129 24 134 | 3imtr3d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 136 | 135 | expdimp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑦  ∈  ( Base ‘ 𝑊 )  →  ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 137 | 136 | ralrimiv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 138 | 119 128 137 | 3jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝑦  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  →  𝑥  =  ( 0g ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 139 | 138 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ( ( 𝑦  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  →  𝑥  =  ( 0g ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) | 
						
							| 140 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 141 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 142 |  | eqid | ⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) )  =  ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 143 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 144 | 73 77 140 141 142 143 | isphl | ⊢ ( 𝑊  ∈  PreHil  ↔  ( 𝑊  ∈  LVec  ∧  ( Scalar ‘ 𝑊 )  ∈  *-Ring  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ( ( 𝑦  ∈  ( Base ‘ 𝑊 )  ↦  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  →  𝑥  =  ( 0g ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) | 
						
							| 145 | 12 18 139 144 | syl3anbrc | ⊢ ( 𝜑  →  𝑊  ∈  PreHil ) |