Step |
Hyp |
Ref |
Expression |
1 |
|
isphld.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) |
2 |
|
isphld.a |
⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) |
3 |
|
isphld.s |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) |
4 |
|
isphld.i |
⊢ ( 𝜑 → 𝐼 = ( ·𝑖 ‘ 𝑊 ) ) |
5 |
|
isphld.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑊 ) ) |
6 |
|
isphld.f |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
7 |
|
isphld.k |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝐹 ) ) |
8 |
|
isphld.p |
⊢ ( 𝜑 → ⨣ = ( +g ‘ 𝐹 ) ) |
9 |
|
isphld.t |
⊢ ( 𝜑 → × = ( .r ‘ 𝐹 ) ) |
10 |
|
isphld.c |
⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
11 |
|
isphld.o |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ 𝐹 ) ) |
12 |
|
isphld.l |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
13 |
|
isphld.r |
⊢ ( 𝜑 → 𝐹 ∈ *-Ring ) |
14 |
|
isphld.cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ) |
15 |
|
isphld.d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐾 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) |
16 |
|
isphld.ns |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑥 𝐼 𝑥 ) = 𝑂 ) → 𝑥 = 0 ) |
17 |
|
isphld.cj |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ) |
18 |
6 13
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ *-Ring ) |
19 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
20 |
19
|
cbvmptv |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
21 |
14
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ) ) |
22 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑊 ) ) ) |
23 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↔ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) |
24 |
22 23
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ) |
25 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐼 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
26 |
6
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
27 |
7 26
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
28 |
25 27
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
29 |
21 24 28
|
3imtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
30 |
29
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
31 |
30
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
32 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
33 |
32
|
cbvmptv |
⊢ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
34 |
31 33
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
36 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
37 |
36
|
mpteq2dv |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
38 |
37
|
feq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
39 |
38
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
40 |
35 39
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
41 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
42 |
15
|
3exp |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝐾 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) ) ) |
43 |
27
|
eleq2d |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝐾 ↔ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
44 |
|
3anrot |
⊢ ( ( 𝑧 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) |
45 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑉 ↔ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) |
46 |
45 22 23
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ) |
47 |
44 46
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ) |
48 |
3
|
oveqd |
⊢ ( 𝜑 → ( 𝑞 · 𝑥 ) = ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
49 |
|
eqidd |
⊢ ( 𝜑 → 𝑦 = 𝑦 ) |
50 |
2 48 49
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑞 · 𝑥 ) + 𝑦 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) |
51 |
|
eqidd |
⊢ ( 𝜑 → 𝑧 = 𝑧 ) |
52 |
4 50 51
|
oveq123d |
⊢ ( 𝜑 → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
53 |
6
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝐹 ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
54 |
8 53
|
eqtrd |
⊢ ( 𝜑 → ⨣ = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
55 |
6
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ 𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
56 |
9 55
|
eqtrd |
⊢ ( 𝜑 → × = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
57 |
|
eqidd |
⊢ ( 𝜑 → 𝑞 = 𝑞 ) |
58 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
59 |
56 57 58
|
oveq123d |
⊢ ( 𝜑 → ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
60 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 𝐼 𝑧 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
61 |
54 59 60
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
62 |
52 61
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) |
63 |
47 62
|
imbi12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ⨣ ( 𝑦 𝐼 𝑧 ) ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) |
64 |
42 43 63
|
3imtr3d |
⊢ ( 𝜑 → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) |
65 |
64
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
66 |
65
|
3exp2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑧 ∈ ( Base ‘ 𝑊 ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) ) |
67 |
66
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) ) ) ) |
68 |
67
|
3imp2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
69 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
70 |
12 69
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LMod ) |
72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
73 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
74 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
75 |
73 74
|
lss1 |
⊢ ( 𝑊 ∈ LMod → ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
76 |
72 75
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
77 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
78 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
79 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
80 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
81 |
77 78 79 80 74
|
lsscl |
⊢ ( ( ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
82 |
76 81
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
83 |
|
oveq1 |
⊢ ( 𝑤 = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
84 |
|
eqid |
⊢ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
85 |
|
ovex |
⊢ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ∈ V |
86 |
83 84 85
|
fvmpt3i |
⊢ ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
87 |
82 86
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
88 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
89 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
90 |
89 84 85
|
fvmpt3i |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
91 |
88 90
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
92 |
91
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
93 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
94 |
|
oveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
95 |
94 84 85
|
fvmpt3i |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
96 |
93 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) |
97 |
92 96
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) |
98 |
68 87 97
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) |
99 |
98
|
ralrimivvva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) |
100 |
77
|
lmodring |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
101 |
|
rlmlmod |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) |
102 |
70 100 101
|
3syl |
⊢ ( 𝜑 → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) |
103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) |
104 |
|
rlmbas |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) |
105 |
|
fvex |
⊢ ( Scalar ‘ 𝑊 ) ∈ V |
106 |
|
rlmsca |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ V → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
107 |
105 106
|
ax-mp |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) |
108 |
|
rlmplusg |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) |
109 |
|
rlmvsca |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) |
110 |
73 104 77 107 78 79 108 80 109
|
islmhm2 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) ) |
111 |
71 103 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( +g ‘ 𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) ) |
112 |
40 41 99 111
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
113 |
112
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
114 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) = ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
115 |
114
|
mpteq2dv |
⊢ ( 𝑧 = 𝑥 → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
116 |
115
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
117 |
116
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
118 |
113 117
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
119 |
20 118
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
120 |
16
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( ( 𝑥 𝐼 𝑥 ) = 𝑂 → 𝑥 = 0 ) ) ) |
121 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐼 𝑥 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
122 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
123 |
11 122
|
eqtrd |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
124 |
121 123
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑥 𝐼 𝑥 ) = 𝑂 ↔ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
125 |
5
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑥 = 0 ↔ 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
126 |
124 125
|
imbi12d |
⊢ ( 𝜑 → ( ( ( 𝑥 𝐼 𝑥 ) = 𝑂 → 𝑥 = 0 ) ↔ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) ) |
127 |
120 22 126
|
3imtr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) ) |
128 |
127
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ) |
129 |
17
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ) ) |
130 |
6
|
fveq2d |
⊢ ( 𝜑 → ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
131 |
10 130
|
eqtrd |
⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
132 |
131 25
|
fveq12d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
133 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 𝐼 𝑥 ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
134 |
132 133
|
eqeq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
135 |
129 24 134
|
3imtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
136 |
135
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
137 |
136
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) |
138 |
119 128 137
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
139 |
138
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) |
140 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
141 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
142 |
|
eqid |
⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) |
143 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
144 |
73 77 140 141 142 143
|
isphl |
⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ ( Scalar ‘ 𝑊 ) ∈ *-Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
145 |
12 18 139 144
|
syl3anbrc |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |