Metamath Proof Explorer


Theorem isphld

Description: Properties that determine a pre-Hilbert (inner product) space. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses isphld.v ( 𝜑𝑉 = ( Base ‘ 𝑊 ) )
isphld.a ( 𝜑+ = ( +g𝑊 ) )
isphld.s ( 𝜑· = ( ·𝑠𝑊 ) )
isphld.i ( 𝜑𝐼 = ( ·𝑖𝑊 ) )
isphld.z ( 𝜑0 = ( 0g𝑊 ) )
isphld.f ( 𝜑𝐹 = ( Scalar ‘ 𝑊 ) )
isphld.k ( 𝜑𝐾 = ( Base ‘ 𝐹 ) )
isphld.p ( 𝜑 = ( +g𝐹 ) )
isphld.t ( 𝜑× = ( .r𝐹 ) )
isphld.c ( 𝜑 = ( *𝑟𝐹 ) )
isphld.o ( 𝜑𝑂 = ( 0g𝐹 ) )
isphld.l ( 𝜑𝑊 ∈ LVec )
isphld.r ( 𝜑𝐹 ∈ *-Ring )
isphld.cl ( ( 𝜑𝑥𝑉𝑦𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 )
isphld.d ( ( 𝜑𝑞𝐾 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ( 𝑦 𝐼 𝑧 ) ) )
isphld.ns ( ( 𝜑𝑥𝑉 ∧ ( 𝑥 𝐼 𝑥 ) = 𝑂 ) → 𝑥 = 0 )
isphld.cj ( ( 𝜑𝑥𝑉𝑦𝑉 ) → ( ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) )
Assertion isphld ( 𝜑𝑊 ∈ PreHil )

Proof

Step Hyp Ref Expression
1 isphld.v ( 𝜑𝑉 = ( Base ‘ 𝑊 ) )
2 isphld.a ( 𝜑+ = ( +g𝑊 ) )
3 isphld.s ( 𝜑· = ( ·𝑠𝑊 ) )
4 isphld.i ( 𝜑𝐼 = ( ·𝑖𝑊 ) )
5 isphld.z ( 𝜑0 = ( 0g𝑊 ) )
6 isphld.f ( 𝜑𝐹 = ( Scalar ‘ 𝑊 ) )
7 isphld.k ( 𝜑𝐾 = ( Base ‘ 𝐹 ) )
8 isphld.p ( 𝜑 = ( +g𝐹 ) )
9 isphld.t ( 𝜑× = ( .r𝐹 ) )
10 isphld.c ( 𝜑 = ( *𝑟𝐹 ) )
11 isphld.o ( 𝜑𝑂 = ( 0g𝐹 ) )
12 isphld.l ( 𝜑𝑊 ∈ LVec )
13 isphld.r ( 𝜑𝐹 ∈ *-Ring )
14 isphld.cl ( ( 𝜑𝑥𝑉𝑦𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 )
15 isphld.d ( ( 𝜑𝑞𝐾 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ( 𝑦 𝐼 𝑧 ) ) )
16 isphld.ns ( ( 𝜑𝑥𝑉 ∧ ( 𝑥 𝐼 𝑥 ) = 𝑂 ) → 𝑥 = 0 )
17 isphld.cj ( ( 𝜑𝑥𝑉𝑦𝑉 ) → ( ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) )
18 6 13 eqeltrrd ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ *-Ring )
19 oveq1 ( 𝑦 = 𝑤 → ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) = ( 𝑤 ( ·𝑖𝑊 ) 𝑥 ) )
20 19 cbvmptv ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑥 ) )
21 14 3expib ( 𝜑 → ( ( 𝑥𝑉𝑦𝑉 ) → ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ) )
22 1 eleq2d ( 𝜑 → ( 𝑥𝑉𝑥 ∈ ( Base ‘ 𝑊 ) ) )
23 1 eleq2d ( 𝜑 → ( 𝑦𝑉𝑦 ∈ ( Base ‘ 𝑊 ) ) )
24 22 23 anbi12d ( 𝜑 → ( ( 𝑥𝑉𝑦𝑉 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) )
25 4 oveqd ( 𝜑 → ( 𝑥 𝐼 𝑦 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) )
26 6 fveq2d ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
27 7 26 eqtrd ( 𝜑𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
28 25 27 eleq12d ( 𝜑 → ( ( 𝑥 𝐼 𝑦 ) ∈ 𝐾 ↔ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
29 21 24 28 3imtr3d ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
30 29 impl ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
31 30 an32s ( ( ( 𝜑𝑦 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
32 oveq1 ( 𝑤 = 𝑥 → ( 𝑤 ( ·𝑖𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) )
33 32 cbvmptv ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) )
34 31 33 fmptd ( ( 𝜑𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
35 34 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
36 oveq2 ( 𝑦 = 𝑧 → ( 𝑤 ( ·𝑖𝑊 ) 𝑦 ) = ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) )
37 36 mpteq2dv ( 𝑦 = 𝑧 → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) )
38 37 feq1d ( 𝑦 = 𝑧 → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
39 38 rspccva ( ( ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑦 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
40 35 39 sylan ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
41 eqidd ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) )
42 15 3exp ( 𝜑 → ( 𝑞𝐾 → ( ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ( 𝑦 𝐼 𝑧 ) ) ) ) )
43 27 eleq2d ( 𝜑 → ( 𝑞𝐾𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
44 3anrot ( ( 𝑧𝑉𝑥𝑉𝑦𝑉 ) ↔ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) )
45 1 eleq2d ( 𝜑 → ( 𝑧𝑉𝑧 ∈ ( Base ‘ 𝑊 ) ) )
46 45 22 23 3anbi123d ( 𝜑 → ( ( 𝑧𝑉𝑥𝑉𝑦𝑉 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) )
47 44 46 bitr3id ( 𝜑 → ( ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) )
48 3 oveqd ( 𝜑 → ( 𝑞 · 𝑥 ) = ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) )
49 eqidd ( 𝜑𝑦 = 𝑦 )
50 2 48 49 oveq123d ( 𝜑 → ( ( 𝑞 · 𝑥 ) + 𝑦 ) = ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) )
51 eqidd ( 𝜑𝑧 = 𝑧 )
52 4 50 51 oveq123d ( 𝜑 → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) )
53 6 fveq2d ( 𝜑 → ( +g𝐹 ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) )
54 8 53 eqtrd ( 𝜑 = ( +g ‘ ( Scalar ‘ 𝑊 ) ) )
55 6 fveq2d ( 𝜑 → ( .r𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) )
56 9 55 eqtrd ( 𝜑× = ( .r ‘ ( Scalar ‘ 𝑊 ) ) )
57 eqidd ( 𝜑𝑞 = 𝑞 )
58 4 oveqd ( 𝜑 → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) )
59 56 57 58 oveq123d ( 𝜑 → ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) )
60 4 oveqd ( 𝜑 → ( 𝑦 𝐼 𝑧 ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) )
61 54 59 60 oveq123d ( 𝜑 → ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ( 𝑦 𝐼 𝑧 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) )
62 52 61 eqeq12d ( 𝜑 → ( ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ( 𝑦 𝐼 𝑧 ) ) ↔ ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) ) )
63 47 62 imbi12d ( 𝜑 → ( ( ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) → ( ( ( 𝑞 · 𝑥 ) + 𝑦 ) 𝐼 𝑧 ) = ( ( 𝑞 × ( 𝑥 𝐼 𝑧 ) ) ( 𝑦 𝐼 𝑧 ) ) ) ↔ ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) ) ) )
64 42 43 63 3imtr3d ( 𝜑 → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) ) ) )
65 64 imp31 ( ( ( 𝜑𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) )
66 65 3exp2 ( ( 𝜑𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑧 ∈ ( Base ‘ 𝑊 ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) ) ) ) )
67 66 impancom ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) ) ) ) )
68 67 3imp2 ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) )
69 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
70 12 69 syl ( 𝜑𝑊 ∈ LMod )
71 70 adantr ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LMod )
72 71 adantr ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod )
73 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
74 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
75 73 74 lss1 ( 𝑊 ∈ LMod → ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) )
76 72 75 syl ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) )
77 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
78 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
79 eqid ( +g𝑊 ) = ( +g𝑊 )
80 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
81 77 78 79 80 74 lsscl ( ( ( Base ‘ 𝑊 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) )
82 76 81 sylancom ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) )
83 oveq1 ( 𝑤 = ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) → ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) = ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) )
84 eqid ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) )
85 ovex ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ∈ V
86 83 84 85 fvmpt3i ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ) = ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) )
87 82 86 syl ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ) = ( ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ( ·𝑖𝑊 ) 𝑧 ) )
88 simpr2 ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
89 oveq1 ( 𝑤 = 𝑥 → ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) )
90 89 84 85 fvmpt3i ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) )
91 88 90 syl ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) )
92 91 oveq2d ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) = ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) )
93 simpr3 ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) )
94 oveq1 ( 𝑤 = 𝑦 → ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) )
95 94 84 85 fvmpt3i ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) )
96 93 95 syl ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) )
97 92 96 oveq12d ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑥 ( ·𝑖𝑊 ) 𝑧 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑦 ( ·𝑖𝑊 ) 𝑧 ) ) )
98 68 87 97 3eqtr4d ( ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) )
99 98 ralrimivvva ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) → ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) )
100 77 lmodring ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring )
101 rlmlmod ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod )
102 70 100 101 3syl ( 𝜑 → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod )
103 102 adantr ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod )
104 rlmbas ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )
105 fvex ( Scalar ‘ 𝑊 ) ∈ V
106 rlmsca ( ( Scalar ‘ 𝑊 ) ∈ V → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) )
107 105 106 ax-mp ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )
108 rlmplusg ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )
109 rlmvsca ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) )
110 73 104 77 107 78 79 108 80 109 islmhm2 ( ( 𝑊 ∈ LMod ∧ ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ∈ LMod ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) )
111 71 103 110 syl2anc ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ ( ( 𝑞 ( ·𝑠𝑊 ) 𝑥 ) ( +g𝑊 ) 𝑦 ) ) = ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑥 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ‘ 𝑦 ) ) ) ) )
112 40 41 99 111 mpbir3and ( ( 𝜑𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) )
113 112 ralrimiva ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) )
114 oveq2 ( 𝑧 = 𝑥 → ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) = ( 𝑤 ( ·𝑖𝑊 ) 𝑥 ) )
115 114 mpteq2dv ( 𝑧 = 𝑥 → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) = ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑥 ) ) )
116 115 eleq1d ( 𝑧 = 𝑥 → ( ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ) )
117 116 rspccva ( ( ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑧 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) )
118 113 117 sylan ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑤 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑤 ( ·𝑖𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) )
119 20 118 eqeltrid ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) )
120 16 3exp ( 𝜑 → ( 𝑥𝑉 → ( ( 𝑥 𝐼 𝑥 ) = 𝑂𝑥 = 0 ) ) )
121 4 oveqd ( 𝜑 → ( 𝑥 𝐼 𝑥 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) )
122 6 fveq2d ( 𝜑 → ( 0g𝐹 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
123 11 122 eqtrd ( 𝜑𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
124 121 123 eqeq12d ( 𝜑 → ( ( 𝑥 𝐼 𝑥 ) = 𝑂 ↔ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
125 5 eqeq2d ( 𝜑 → ( 𝑥 = 0𝑥 = ( 0g𝑊 ) ) )
126 124 125 imbi12d ( 𝜑 → ( ( ( 𝑥 𝐼 𝑥 ) = 𝑂𝑥 = 0 ) ↔ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g𝑊 ) ) ) )
127 120 22 126 3imtr3d ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g𝑊 ) ) ) )
128 127 imp ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g𝑊 ) ) )
129 17 3expib ( 𝜑 → ( ( 𝑥𝑉𝑦𝑉 ) → ( ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ) )
130 6 fveq2d ( 𝜑 → ( *𝑟𝐹 ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) )
131 10 130 eqtrd ( 𝜑 = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) )
132 131 25 fveq12d ( 𝜑 → ( ‘ ( 𝑥 𝐼 𝑦 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) )
133 4 oveqd ( 𝜑 → ( 𝑦 𝐼 𝑥 ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) )
134 132 133 eqeq12d ( 𝜑 → ( ( ‘ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑦 𝐼 𝑥 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) )
135 129 24 134 3imtr3d ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) )
136 135 expdimp ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑊 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) )
137 136 ralrimiv ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) )
138 119 128 137 3jca ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) )
139 138 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) )
140 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
141 eqid ( 0g𝑊 ) = ( 0g𝑊 )
142 eqid ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) )
143 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
144 73 77 140 141 142 143 isphl ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ ( Scalar ‘ 𝑊 ) ∈ *-Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ( ( 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 = ( 0g𝑊 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) ) = ( 𝑦 ( ·𝑖𝑊 ) 𝑥 ) ) ) )
145 12 18 139 144 syl3anbrc ( 𝜑𝑊 ∈ PreHil )