Metamath Proof Explorer


Theorem ispod

Description: Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014)

Ref Expression
Hypotheses ispod.1 ( ( 𝜑𝑥𝐴 ) → ¬ 𝑥 𝑅 𝑥 )
ispod.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
Assertion ispod ( 𝜑𝑅 Po 𝐴 )

Proof

Step Hyp Ref Expression
1 ispod.1 ( ( 𝜑𝑥𝐴 ) → ¬ 𝑥 𝑅 𝑥 )
2 ispod.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
3 1 3ad2antr1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ¬ 𝑥 𝑅 𝑥 )
4 3 2 jca ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )
5 4 ralrimivvva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )
6 df-po ( 𝑅 Po 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )
7 5 6 sylibr ( 𝜑𝑅 Po 𝐴 )