Step |
Hyp |
Ref |
Expression |
1 |
|
ispos.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ispos.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑝 = 𝐾 → ( 𝑏 = ( Base ‘ 𝑝 ) ↔ 𝑏 = 𝐵 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ( le ‘ 𝐾 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ≤ ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑝 = 𝐾 → ( 𝑟 = ( le ‘ 𝑝 ) ↔ 𝑟 = ≤ ) ) |
9 |
5 8
|
3anbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑏 = ( Base ‘ 𝑝 ) ∧ 𝑟 = ( le ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ↔ ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) ) |
10 |
9
|
2exbidv |
⊢ ( 𝑝 = 𝐾 → ( ∃ 𝑏 ∃ 𝑟 ( 𝑏 = ( Base ‘ 𝑝 ) ∧ 𝑟 = ( le ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ↔ ∃ 𝑏 ∃ 𝑟 ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) ) |
11 |
|
df-poset |
⊢ Poset = { 𝑝 ∣ ∃ 𝑏 ∃ 𝑟 ( 𝑏 = ( Base ‘ 𝑝 ) ∧ 𝑟 = ( le ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) } |
12 |
10 11
|
elab4g |
⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∃ 𝑏 ∃ 𝑟 ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) ) |
13 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
14 |
2
|
fvexi |
⊢ ≤ ∈ V |
15 |
|
raleq |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) |
16 |
15
|
raleqbi1dv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) |
17 |
16
|
raleqbi1dv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) |
18 |
|
breq |
⊢ ( 𝑟 = ≤ → ( 𝑥 𝑟 𝑥 ↔ 𝑥 ≤ 𝑥 ) ) |
19 |
|
breq |
⊢ ( 𝑟 = ≤ → ( 𝑥 𝑟 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
20 |
|
breq |
⊢ ( 𝑟 = ≤ → ( 𝑦 𝑟 𝑥 ↔ 𝑦 ≤ 𝑥 ) ) |
21 |
19 20
|
anbi12d |
⊢ ( 𝑟 = ≤ → ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
22 |
21
|
imbi1d |
⊢ ( 𝑟 = ≤ → ( ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
23 |
|
breq |
⊢ ( 𝑟 = ≤ → ( 𝑦 𝑟 𝑧 ↔ 𝑦 ≤ 𝑧 ) ) |
24 |
19 23
|
anbi12d |
⊢ ( 𝑟 = ≤ → ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ) ) |
25 |
|
breq |
⊢ ( 𝑟 = ≤ → ( 𝑥 𝑟 𝑧 ↔ 𝑥 ≤ 𝑧 ) ) |
26 |
24 25
|
imbi12d |
⊢ ( 𝑟 = ≤ → ( ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
27 |
18 22 26
|
3anbi123d |
⊢ ( 𝑟 = ≤ → ( ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
28 |
27
|
ralbidv |
⊢ ( 𝑟 = ≤ → ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
29 |
28
|
2ralbidv |
⊢ ( 𝑟 = ≤ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
30 |
13 14 17 29
|
ceqsex2v |
⊢ ( ∃ 𝑏 ∃ 𝑟 ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
31 |
30
|
anbi2i |
⊢ ( ( 𝐾 ∈ V ∧ ∃ 𝑏 ∃ 𝑟 ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) ) ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
32 |
12 31
|
bitri |
⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |