| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isposi.k | ⊢ 𝐾  ∈  V | 
						
							| 2 |  | isposi.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 3 |  | isposi.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 4 |  | isposi.1 | ⊢ ( 𝑥  ∈  𝐵  →  𝑥  ≤  𝑥 ) | 
						
							| 5 |  | isposi.2 | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 6 |  | isposi.3 | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 7 | 4 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  𝑥  ≤  𝑥 ) | 
						
							| 8 | 5 | 3adant3 | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 9 | 7 8 6 | 3jca | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑥  ≤  𝑥  ∧  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  →  𝑥  =  𝑦 )  ∧  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) | 
						
							| 10 | 9 | rgen3 | ⊢ ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑥  ∧  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  →  𝑥  =  𝑦 )  ∧  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 11 | 2 3 | ispos | ⊢ ( 𝐾  ∈  Poset  ↔  ( 𝐾  ∈  V  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝑥  ≤  𝑥  ∧  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  →  𝑥  =  𝑦 )  ∧  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) ) ) | 
						
							| 12 | 1 10 11 | mpbir2an | ⊢ 𝐾  ∈  Poset |