Metamath Proof Explorer


Theorem isposi

Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011)

Ref Expression
Hypotheses isposi.k 𝐾 ∈ V
isposi.b 𝐵 = ( Base ‘ 𝐾 )
isposi.l = ( le ‘ 𝐾 )
isposi.1 ( 𝑥𝐵𝑥 𝑥 )
isposi.2 ( ( 𝑥𝐵𝑦𝐵 ) → ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) )
isposi.3 ( ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) → ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) )
Assertion isposi 𝐾 ∈ Poset

Proof

Step Hyp Ref Expression
1 isposi.k 𝐾 ∈ V
2 isposi.b 𝐵 = ( Base ‘ 𝐾 )
3 isposi.l = ( le ‘ 𝐾 )
4 isposi.1 ( 𝑥𝐵𝑥 𝑥 )
5 isposi.2 ( ( 𝑥𝐵𝑦𝐵 ) → ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) )
6 isposi.3 ( ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) → ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) )
7 4 3ad2ant1 ( ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) → 𝑥 𝑥 )
8 5 3adant3 ( ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) → ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) )
9 7 8 6 3jca ( ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) → ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) )
10 9 rgen3 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) )
11 2 3 ispos ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ) )
12 1 10 11 mpbir2an 𝐾 ∈ Poset