| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isposix.a | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | isposix.b | ⊢  ≤   ∈  V | 
						
							| 3 |  | isposix.k | ⊢ 𝐾  =  { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( le ‘ ndx ) ,   ≤  〉 } | 
						
							| 4 |  | isposix.1 | ⊢ ( 𝑥  ∈  𝐵  →  𝑥  ≤  𝑥 ) | 
						
							| 5 |  | isposix.2 | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 6 |  | isposix.3 | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 7 |  | prex | ⊢ { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( le ‘ ndx ) ,   ≤  〉 }  ∈  V | 
						
							| 8 | 3 7 | eqeltri | ⊢ 𝐾  ∈  V | 
						
							| 9 |  | basendxltplendx | ⊢ ( Base ‘ ndx )  <  ( le ‘ ndx ) | 
						
							| 10 |  | plendxnn | ⊢ ( le ‘ ndx )  ∈  ℕ | 
						
							| 11 | 3 9 10 | 2strbas1 | ⊢ ( 𝐵  ∈  V  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 12 | 1 11 | ax-mp | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 13 |  | pleid | ⊢ le  =  Slot  ( le ‘ ndx ) | 
						
							| 14 | 3 9 10 13 | 2strop1 | ⊢ (  ≤   ∈  V  →   ≤   =  ( le ‘ 𝐾 ) ) | 
						
							| 15 | 2 14 | ax-mp | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 16 | 8 12 15 4 5 6 | isposi | ⊢ 𝐾  ∈  Poset |