Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } |
2 |
1
|
vmaval |
⊢ ( 𝐴 ∈ ℕ → ( Λ ‘ 𝐴 ) = if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ) |
3 |
2
|
neeq1d |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) ) |
4 |
|
reuen1 |
⊢ ( ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) |
5 |
|
hash1 |
⊢ ( ♯ ‘ 1o ) = 1 |
6 |
5
|
eqeq2i |
⊢ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = ( ♯ ‘ 1o ) ↔ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 ) |
7 |
|
prmdvdsfi |
⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |
8 |
|
1onn |
⊢ 1o ∈ ω |
9 |
|
nnfi |
⊢ ( 1o ∈ ω → 1o ∈ Fin ) |
10 |
8 9
|
ax-mp |
⊢ 1o ∈ Fin |
11 |
|
hashen |
⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ∧ 1o ∈ Fin ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = ( ♯ ‘ 1o ) ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) ) |
12 |
7 10 11
|
sylancl |
⊢ ( 𝐴 ∈ ℕ → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = ( ♯ ‘ 1o ) ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) ) |
13 |
6 12
|
bitr3id |
⊢ ( 𝐴 ∈ ℕ → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) ) |
14 |
13
|
biimpar |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 ) |
15 |
14
|
iftrued |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) = ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) |
16 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) |
17 |
|
en1b |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } = { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ) |
18 |
16 17
|
sylib |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } = { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ) |
19 |
|
ssrab2 |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ ℙ |
20 |
18 19
|
eqsstrrdi |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ⊆ ℙ ) |
21 |
7
|
uniexd |
⊢ ( 𝐴 ∈ ℕ → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ V ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ V ) |
23 |
|
snssg |
⊢ ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ V → ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℙ ↔ { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ⊆ ℙ ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℙ ↔ { ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } } ⊆ ℙ ) ) |
25 |
20 24
|
mpbird |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℙ ) |
26 |
|
prmuz2 |
⊢ ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℙ → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ( ℤ≥ ‘ 2 ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ( ℤ≥ ‘ 2 ) ) |
28 |
|
eluzelre |
⊢ ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ( ℤ≥ ‘ 2 ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℝ ) |
29 |
27 28
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ℝ ) |
30 |
|
eluz2gt1 |
⊢ ( ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ ( ℤ≥ ‘ 2 ) → 1 < ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) |
31 |
27 30
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → 1 < ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) |
32 |
29 31
|
rplogcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℝ+ ) |
33 |
32
|
rpne0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ≠ 0 ) |
34 |
15 33
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) |
35 |
34
|
ex |
⊢ ( 𝐴 ∈ ℕ → ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) ) |
36 |
|
iffalse |
⊢ ( ¬ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) = 0 ) |
37 |
36
|
necon1ai |
⊢ ( if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 ) |
38 |
37 13
|
syl5ib |
⊢ ( 𝐴 ∈ ℕ → ( if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ) ) |
39 |
35 38
|
impbid |
⊢ ( 𝐴 ∈ ℕ → ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ≈ 1o ↔ if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) ) |
40 |
4 39
|
syl5bb |
⊢ ( 𝐴 ∈ ℕ → ( ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) , 0 ) ≠ 0 ) ) |
41 |
3 40
|
bitr4d |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃! 𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ) ) |