Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | isprm | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝑝 = 𝑃 → ( 𝑛 ∥ 𝑝 ↔ 𝑛 ∥ 𝑃 ) ) | |
2 | 1 | rabbidv | ⊢ ( 𝑝 = 𝑃 → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } = { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) |
3 | 2 | breq1d | ⊢ ( 𝑝 = 𝑃 → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) ) |
4 | df-prm | ⊢ ℙ = { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o } | |
5 | 3 4 | elrab2 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) ) |