| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 𝑃 ≠ 1 ) |
| 2 |
1
|
necomd |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 1 ≠ 𝑃 ) |
| 3 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) |
| 4 |
|
nnz |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ ) |
| 5 |
|
1dvds |
⊢ ( 𝑃 ∈ ℤ → 1 ∥ 𝑃 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑃 ∈ ℕ → 1 ∥ 𝑃 ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 1 ∥ 𝑃 ) |
| 8 |
|
1nn |
⊢ 1 ∈ ℕ |
| 9 |
|
breq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ∥ 𝑃 ↔ 1 ∥ 𝑃 ) ) |
| 10 |
9
|
elrab3 |
⊢ ( 1 ∈ ℕ → ( 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ↔ 1 ∥ 𝑃 ) ) |
| 11 |
8 10
|
ax-mp |
⊢ ( 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ↔ 1 ∥ 𝑃 ) |
| 12 |
7 11
|
sylibr |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) |
| 13 |
|
iddvds |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 𝑃 ) |
| 14 |
4 13
|
syl |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∥ 𝑃 ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 𝑃 ∥ 𝑃 ) |
| 16 |
|
breq1 |
⊢ ( 𝑛 = 𝑃 → ( 𝑛 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃 ) ) |
| 17 |
16
|
elrab3 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ↔ 𝑃 ∥ 𝑃 ) ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → ( 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ↔ 𝑃 ∥ 𝑃 ) ) |
| 19 |
15 18
|
mpbird |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) |
| 20 |
|
en2eqpr |
⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ∧ 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ∧ 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) → ( 1 ≠ 𝑃 → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) |
| 21 |
3 12 19 20
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → ( 1 ≠ 𝑃 → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) |
| 22 |
2 21
|
mpd |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) |
| 23 |
22
|
ex |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) |
| 24 |
|
necom |
⊢ ( 1 ≠ 𝑃 ↔ 𝑃 ≠ 1 ) |
| 25 |
|
pr2ne |
⊢ ( ( 1 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( { 1 , 𝑃 } ≈ 2o ↔ 1 ≠ 𝑃 ) ) |
| 26 |
8 25
|
mpan |
⊢ ( 𝑃 ∈ ℕ → ( { 1 , 𝑃 } ≈ 2o ↔ 1 ≠ 𝑃 ) ) |
| 27 |
26
|
biimpar |
⊢ ( ( 𝑃 ∈ ℕ ∧ 1 ≠ 𝑃 ) → { 1 , 𝑃 } ≈ 2o ) |
| 28 |
24 27
|
sylan2br |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → { 1 , 𝑃 } ≈ 2o ) |
| 29 |
|
breq1 |
⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ↔ { 1 , 𝑃 } ≈ 2o ) ) |
| 30 |
28 29
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) ) |
| 31 |
23 30
|
impbid |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) |