Metamath Proof Explorer


Theorem isprm2lem

Description: Lemma for isprm2 . (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion isprm2lem ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ↔ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } = { 1 , 𝑃 } ) )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → 𝑃 ≠ 1 )
2 1 necomd ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → 1 ≠ 𝑃 )
3 simpr ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o )
4 nnz ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ )
5 1dvds ( 𝑃 ∈ ℤ → 1 ∥ 𝑃 )
6 4 5 syl ( 𝑃 ∈ ℕ → 1 ∥ 𝑃 )
7 6 ad2antrr ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → 1 ∥ 𝑃 )
8 1nn 1 ∈ ℕ
9 breq1 ( 𝑛 = 1 → ( 𝑛𝑃 ↔ 1 ∥ 𝑃 ) )
10 9 elrab3 ( 1 ∈ ℕ → ( 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ↔ 1 ∥ 𝑃 ) )
11 8 10 ax-mp ( 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ↔ 1 ∥ 𝑃 )
12 7 11 sylibr ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } )
13 iddvds ( 𝑃 ∈ ℤ → 𝑃𝑃 )
14 4 13 syl ( 𝑃 ∈ ℕ → 𝑃𝑃 )
15 14 ad2antrr ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → 𝑃𝑃 )
16 breq1 ( 𝑛 = 𝑃 → ( 𝑛𝑃𝑃𝑃 ) )
17 16 elrab3 ( 𝑃 ∈ ℕ → ( 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ↔ 𝑃𝑃 ) )
18 17 ad2antrr ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → ( 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ↔ 𝑃𝑃 ) )
19 15 18 mpbird ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } )
20 en2eqpr ( ( { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ∧ 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ∧ 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ) → ( 1 ≠ 𝑃 → { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } = { 1 , 𝑃 } ) )
21 3 12 19 20 syl3anc ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → ( 1 ≠ 𝑃 → { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } = { 1 , 𝑃 } ) )
22 2 21 mpd ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) → { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } = { 1 , 𝑃 } )
23 22 ex ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o → { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } = { 1 , 𝑃 } ) )
24 necom ( 1 ≠ 𝑃𝑃 ≠ 1 )
25 pr2ne ( ( 1 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( { 1 , 𝑃 } ≈ 2o ↔ 1 ≠ 𝑃 ) )
26 8 25 mpan ( 𝑃 ∈ ℕ → ( { 1 , 𝑃 } ≈ 2o ↔ 1 ≠ 𝑃 ) )
27 26 biimpar ( ( 𝑃 ∈ ℕ ∧ 1 ≠ 𝑃 ) → { 1 , 𝑃 } ≈ 2o )
28 24 27 sylan2br ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → { 1 , 𝑃 } ≈ 2o )
29 breq1 ( { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } = { 1 , 𝑃 } → ( { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ↔ { 1 , 𝑃 } ≈ 2o ) )
30 28 29 syl5ibrcom ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } = { 1 , 𝑃 } → { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ) )
31 23 30 impbid ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } ≈ 2o ↔ { 𝑛 ∈ ℕ ∣ 𝑛𝑃 } = { 1 , 𝑃 } ) )