Step |
Hyp |
Ref |
Expression |
1 |
|
isprm2 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
2 |
|
iman |
⊢ ( ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ¬ ( 𝑧 ∈ ℕ ∧ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
3 |
|
eluz2nn |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) |
4 |
|
nnz |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℤ ) |
5 |
|
dvdsle |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃 ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃 ) ) |
7 |
|
nnge1 |
⊢ ( 𝑧 ∈ ℕ → 1 ≤ 𝑧 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → 1 ≤ 𝑧 ) |
9 |
6 8
|
jctild |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) ) ) |
10 |
3 9
|
sylan2 |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑧 ∥ 𝑃 → ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) ) ) |
11 |
|
zre |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) |
12 |
|
nnre |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ ) |
13 |
|
1re |
⊢ 1 ∈ ℝ |
14 |
|
leltne |
⊢ ( ( 1 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 1 ≤ 𝑧 ) → ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ) |
15 |
13 14
|
mp3an1 |
⊢ ( ( 𝑧 ∈ ℝ ∧ 1 ≤ 𝑧 ) → ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ) |
16 |
15
|
3adant2 |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 ≤ 𝑧 ) → ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ) |
17 |
16
|
3expia |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 1 ≤ 𝑧 → ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ) ) |
18 |
|
leltne |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑧 ≤ 𝑃 ) → ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) |
19 |
18
|
3expia |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 𝑧 ≤ 𝑃 → ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) ) |
20 |
17 19
|
anim12d |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) → ( ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ∧ ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) ) ) |
21 |
11 12 20
|
syl2an |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) → ( ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ∧ ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) ) ) |
22 |
|
pm4.38 |
⊢ ( ( ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ∧ ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ( 𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧 ) ) ) |
23 |
|
df-ne |
⊢ ( 𝑧 ≠ 1 ↔ ¬ 𝑧 = 1 ) |
24 |
|
nesym |
⊢ ( 𝑃 ≠ 𝑧 ↔ ¬ 𝑧 = 𝑃 ) |
25 |
23 24
|
anbi12i |
⊢ ( ( 𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧 ) ↔ ( ¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃 ) ) |
26 |
|
ioran |
⊢ ( ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ ( ¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃 ) ) |
27 |
25 26
|
bitr4i |
⊢ ( ( 𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
28 |
22 27
|
bitrdi |
⊢ ( ( ( 1 < 𝑧 ↔ 𝑧 ≠ 1 ) ∧ ( 𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧 ) ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
29 |
21 28
|
syl6 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
30 |
4 3 29
|
syl2an |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃 ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
31 |
10 30
|
syld |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑧 ∥ 𝑃 → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
32 |
31
|
imp |
⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
33 |
|
eluzelz |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℤ ) |
34 |
|
1z |
⊢ 1 ∈ ℤ |
35 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 1 < 𝑧 ↔ ( 1 + 1 ) ≤ 𝑧 ) ) |
36 |
34 35
|
mpan |
⊢ ( 𝑧 ∈ ℤ → ( 1 < 𝑧 ↔ ( 1 + 1 ) ≤ 𝑧 ) ) |
37 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
38 |
37
|
breq1i |
⊢ ( 2 ≤ 𝑧 ↔ ( 1 + 1 ) ≤ 𝑧 ) |
39 |
36 38
|
bitr4di |
⊢ ( 𝑧 ∈ ℤ → ( 1 < 𝑧 ↔ 2 ≤ 𝑧 ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 1 < 𝑧 ↔ 2 ≤ 𝑧 ) ) |
41 |
|
zltlem1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑧 < 𝑃 ↔ 𝑧 ≤ ( 𝑃 − 1 ) ) ) |
42 |
40 41
|
anbi12d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( 𝑃 − 1 ) ) ) ) |
43 |
|
peano2zm |
⊢ ( 𝑃 ∈ ℤ → ( 𝑃 − 1 ) ∈ ℤ ) |
44 |
|
2z |
⊢ 2 ∈ ℤ |
45 |
|
elfz |
⊢ ( ( 𝑧 ∈ ℤ ∧ 2 ∈ ℤ ∧ ( 𝑃 − 1 ) ∈ ℤ ) → ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( 𝑃 − 1 ) ) ) ) |
46 |
44 45
|
mp3an2 |
⊢ ( ( 𝑧 ∈ ℤ ∧ ( 𝑃 − 1 ) ∈ ℤ ) → ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( 𝑃 − 1 ) ) ) ) |
47 |
43 46
|
sylan2 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( 𝑃 − 1 ) ) ) ) |
48 |
42 47
|
bitr4d |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
49 |
4 33 48
|
syl2an |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 1 < 𝑧 ∧ 𝑧 < 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
51 |
32 50
|
bitr3d |
⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑧 ∥ 𝑃 ) → ( ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
52 |
51
|
anasss |
⊢ ( ( 𝑧 ∈ ℕ ∧ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) ) → ( ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
53 |
52
|
expcom |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( 𝑧 ∈ ℕ → ( ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) ) |
54 |
53
|
pm5.32d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 𝑧 ∈ ℕ ∧ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) ) |
55 |
|
fzssuz |
⊢ ( 2 ... ( 𝑃 − 1 ) ) ⊆ ( ℤ≥ ‘ 2 ) |
56 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
57 |
|
uzss |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 2 ) ⊆ ( ℤ≥ ‘ 1 ) ) |
58 |
56 57
|
ax-mp |
⊢ ( ℤ≥ ‘ 2 ) ⊆ ( ℤ≥ ‘ 1 ) |
59 |
55 58
|
sstri |
⊢ ( 2 ... ( 𝑃 − 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) |
60 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
61 |
59 60
|
sseqtrri |
⊢ ( 2 ... ( 𝑃 − 1 ) ) ⊆ ℕ |
62 |
61
|
sseli |
⊢ ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) → 𝑧 ∈ ℕ ) |
63 |
62
|
pm4.71ri |
⊢ ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
64 |
54 63
|
bitr4di |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 𝑧 ∈ ℕ ∧ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
65 |
64
|
notbid |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ¬ ( 𝑧 ∈ ℕ ∧ ¬ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ¬ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
66 |
2 65
|
syl5bb |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ¬ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) |
67 |
66
|
pm5.74da |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∥ 𝑃 → ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ↔ ( 𝑧 ∥ 𝑃 → ¬ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ) ) |
68 |
|
bi2.04 |
⊢ ( ( 𝑧 ∥ 𝑃 → ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
69 |
|
con2b |
⊢ ( ( 𝑧 ∥ 𝑃 → ¬ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ↔ ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) → ¬ 𝑧 ∥ 𝑃 ) ) |
70 |
67 68 69
|
3bitr3g |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ↔ ( 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
71 |
70
|
ralbidv2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ∀ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ¬ 𝑧 ∥ 𝑃 ) ) |
72 |
71
|
pm5.32i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ¬ 𝑧 ∥ 𝑃 ) ) |
73 |
1 72
|
bitri |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 𝑃 − 1 ) ) ¬ 𝑧 ∥ 𝑃 ) ) |