Step |
Hyp |
Ref |
Expression |
1 |
|
isprm2 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
2 |
|
eluz2b3 |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ≠ 1 ) ) |
3 |
2
|
imbi1i |
⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( ( 𝑧 ∈ ℕ ∧ 𝑧 ≠ 1 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) |
4 |
|
impexp |
⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑧 ≠ 1 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ≠ 1 → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) ) |
5 |
|
bi2.04 |
⊢ ( ( 𝑧 ≠ 1 → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∥ 𝑃 → ( 𝑧 ≠ 1 → 𝑧 = 𝑃 ) ) ) |
6 |
|
df-ne |
⊢ ( 𝑧 ≠ 1 ↔ ¬ 𝑧 = 1 ) |
7 |
6
|
imbi1i |
⊢ ( ( 𝑧 ≠ 1 → 𝑧 = 𝑃 ) ↔ ( ¬ 𝑧 = 1 → 𝑧 = 𝑃 ) ) |
8 |
|
df-or |
⊢ ( ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ ( ¬ 𝑧 = 1 → 𝑧 = 𝑃 ) ) |
9 |
7 8
|
bitr4i |
⊢ ( ( 𝑧 ≠ 1 → 𝑧 = 𝑃 ) ↔ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
10 |
9
|
imbi2i |
⊢ ( ( 𝑧 ∥ 𝑃 → ( 𝑧 ≠ 1 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
11 |
5 10
|
bitri |
⊢ ( ( 𝑧 ≠ 1 → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
12 |
11
|
imbi2i |
⊢ ( ( 𝑧 ∈ ℕ → ( 𝑧 ≠ 1 → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
13 |
4 12
|
bitri |
⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑧 ≠ 1 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
14 |
3 13
|
bitri |
⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
15 |
14
|
ralbii2 |
⊢ ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
16 |
15
|
anbi2i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
17 |
1 16
|
bitr4i |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) |