Step |
Hyp |
Ref |
Expression |
1 |
|
isprm4 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) |
2 |
|
prmuz2 |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
2
|
a1i |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ℙ → 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) |
4 |
|
eluz2gt1 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) |
5 |
|
eluzelre |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) |
6 |
|
eluz2nn |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) |
7 |
6
|
nngt0d |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 < 𝑃 ) |
8 |
|
ltmulgt11 |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) → ( 1 < 𝑃 ↔ 𝑃 < ( 𝑃 · 𝑃 ) ) ) |
9 |
5 5 7 8
|
syl3anc |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 1 < 𝑃 ↔ 𝑃 < ( 𝑃 · 𝑃 ) ) ) |
10 |
4 9
|
mpbid |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 < ( 𝑃 · 𝑃 ) ) |
11 |
5 5
|
remulcld |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 · 𝑃 ) ∈ ℝ ) |
12 |
5 11
|
ltnled |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 < ( 𝑃 · 𝑃 ) ↔ ¬ ( 𝑃 · 𝑃 ) ≤ 𝑃 ) ) |
13 |
10 12
|
mpbid |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( 𝑃 · 𝑃 ) ≤ 𝑃 ) |
14 |
|
oveq12 |
⊢ ( ( 𝑧 = 𝑃 ∧ 𝑧 = 𝑃 ) → ( 𝑧 · 𝑧 ) = ( 𝑃 · 𝑃 ) ) |
15 |
14
|
anidms |
⊢ ( 𝑧 = 𝑃 → ( 𝑧 · 𝑧 ) = ( 𝑃 · 𝑃 ) ) |
16 |
15
|
breq1d |
⊢ ( 𝑧 = 𝑃 → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 ↔ ( 𝑃 · 𝑃 ) ≤ 𝑃 ) ) |
17 |
16
|
notbid |
⊢ ( 𝑧 = 𝑃 → ( ¬ ( 𝑧 · 𝑧 ) ≤ 𝑃 ↔ ¬ ( 𝑃 · 𝑃 ) ≤ 𝑃 ) ) |
18 |
13 17
|
syl5ibrcom |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 = 𝑃 → ¬ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) |
19 |
18
|
imim2d |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ( 𝑧 ∥ 𝑃 → ¬ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) ) |
20 |
|
con2 |
⊢ ( ( 𝑧 ∥ 𝑃 → ¬ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) |
21 |
19 20
|
syl6 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
22 |
3 21
|
imim12d |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) → ( 𝑧 ∈ ℙ → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) ) |
23 |
22
|
ralimdv2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
24 |
|
annim |
⊢ ( ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ↔ ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) |
25 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑧 ) → ( 𝑥 · 𝑥 ) = ( 𝑧 · 𝑧 ) ) |
26 |
25
|
anidms |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 · 𝑥 ) = ( 𝑧 · 𝑧 ) ) |
27 |
26
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ↔ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) |
28 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∥ 𝑃 ↔ 𝑧 ∥ 𝑃 ) ) |
29 |
27 28
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ↔ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 ∧ 𝑧 ∥ 𝑃 ) ) ) |
30 |
29
|
rspcev |
⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 ∧ 𝑧 ∥ 𝑃 ) ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) |
31 |
30
|
ancom2s |
⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∥ 𝑃 ∧ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) |
32 |
31
|
expr |
⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∥ 𝑃 ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
33 |
32
|
ad2ant2lr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
34 |
|
simprl |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∥ 𝑃 ) |
35 |
|
eluzelz |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℤ ) |
36 |
35
|
ad2antlr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∈ ℤ ) |
37 |
|
eluz2nn |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℕ ) |
38 |
37
|
ad2antlr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∈ ℕ ) |
39 |
38
|
nnne0d |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ≠ 0 ) |
40 |
|
eluzelz |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℤ ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℤ ) |
42 |
|
dvdsval2 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ∧ 𝑃 ∈ ℤ ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∈ ℤ ) ) |
43 |
36 39 41 42
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∈ ℤ ) ) |
44 |
34 43
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∈ ℤ ) |
45 |
|
eluzelre |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℝ ) |
46 |
45
|
ad2antlr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∈ ℝ ) |
47 |
46
|
recnd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ∈ ℂ ) |
48 |
47
|
mulid2d |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 1 · 𝑧 ) = 𝑧 ) |
49 |
5
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℝ ) |
50 |
6
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℕ ) |
51 |
|
dvdsle |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) → ( 𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃 ) ) |
52 |
51
|
imp |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ ) ∧ 𝑧 ∥ 𝑃 ) → 𝑧 ≤ 𝑃 ) |
53 |
36 50 34 52
|
syl21anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ≤ 𝑃 ) |
54 |
|
simprr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ¬ 𝑧 = 𝑃 ) |
55 |
54
|
neqned |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 ≠ 𝑃 ) |
56 |
55
|
necomd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ≠ 𝑧 ) |
57 |
46 49 53 56
|
leneltd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑧 < 𝑃 ) |
58 |
48 57
|
eqbrtrd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 1 · 𝑧 ) < 𝑃 ) |
59 |
|
1red |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 1 ∈ ℝ ) |
60 |
41
|
zred |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℝ ) |
61 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
62 |
|
nngt0 |
⊢ ( 𝑧 ∈ ℕ → 0 < 𝑧 ) |
63 |
61 62
|
jca |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) |
64 |
38 63
|
syl |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) |
65 |
|
ltmuldiv |
⊢ ( ( 1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) → ( ( 1 · 𝑧 ) < 𝑃 ↔ 1 < ( 𝑃 / 𝑧 ) ) ) |
66 |
59 60 64 65
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 1 · 𝑧 ) < 𝑃 ↔ 1 < ( 𝑃 / 𝑧 ) ) ) |
67 |
58 66
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 1 < ( 𝑃 / 𝑧 ) ) |
68 |
|
eluz2b1 |
⊢ ( ( 𝑃 / 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝑃 / 𝑧 ) ∈ ℤ ∧ 1 < ( 𝑃 / 𝑧 ) ) ) |
69 |
44 67 68
|
sylanbrc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) ) |
70 |
46 46
|
remulcld |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · 𝑧 ) ∈ ℝ ) |
71 |
38 38
|
nnmulcld |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · 𝑧 ) ∈ ℕ ) |
72 |
|
nnrp |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ+ ) |
73 |
|
nnrp |
⊢ ( ( 𝑧 · 𝑧 ) ∈ ℕ → ( 𝑧 · 𝑧 ) ∈ ℝ+ ) |
74 |
|
rpdivcl |
⊢ ( ( 𝑃 ∈ ℝ+ ∧ ( 𝑧 · 𝑧 ) ∈ ℝ+ ) → ( 𝑃 / ( 𝑧 · 𝑧 ) ) ∈ ℝ+ ) |
75 |
72 73 74
|
syl2an |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑧 · 𝑧 ) ∈ ℕ ) → ( 𝑃 / ( 𝑧 · 𝑧 ) ) ∈ ℝ+ ) |
76 |
50 71 75
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 / ( 𝑧 · 𝑧 ) ) ∈ ℝ+ ) |
77 |
49 70 76
|
lemul1d |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) ↔ ( 𝑃 · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ≤ ( ( 𝑧 · 𝑧 ) · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) ) |
78 |
49
|
recnd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 ∈ ℂ ) |
79 |
78 47 78 47 39 39
|
divmuldivd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) = ( ( 𝑃 · 𝑃 ) / ( 𝑧 · 𝑧 ) ) ) |
80 |
71
|
nncnd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · 𝑧 ) ∈ ℂ ) |
81 |
71
|
nnne0d |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · 𝑧 ) ≠ 0 ) |
82 |
78 78 80 81
|
divassd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑃 · 𝑃 ) / ( 𝑧 · 𝑧 ) ) = ( 𝑃 · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) |
83 |
79 82
|
eqtrd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) = ( 𝑃 · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) |
84 |
78 80 81
|
divcan2d |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑧 · 𝑧 ) · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) = 𝑃 ) |
85 |
84
|
eqcomd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → 𝑃 = ( ( 𝑧 · 𝑧 ) · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) |
86 |
83 85
|
breq12d |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ↔ ( 𝑃 · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ≤ ( ( 𝑧 · 𝑧 ) · ( 𝑃 / ( 𝑧 · 𝑧 ) ) ) ) ) |
87 |
77 86
|
bitr4d |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) ↔ ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ) ) |
88 |
87
|
biimpd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) → ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ) ) |
89 |
78 47 39
|
divcan2d |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑧 · ( 𝑃 / 𝑧 ) ) = 𝑃 ) |
90 |
|
dvds0lem |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ ( 𝑃 / 𝑧 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ ( 𝑧 · ( 𝑃 / 𝑧 ) ) = 𝑃 ) → ( 𝑃 / 𝑧 ) ∥ 𝑃 ) |
91 |
36 44 41 89 90
|
syl31anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 / 𝑧 ) ∥ 𝑃 ) |
92 |
88 91
|
jctird |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) → ( ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ∧ ( 𝑃 / 𝑧 ) ∥ 𝑃 ) ) ) |
93 |
|
oveq12 |
⊢ ( ( 𝑥 = ( 𝑃 / 𝑧 ) ∧ 𝑥 = ( 𝑃 / 𝑧 ) ) → ( 𝑥 · 𝑥 ) = ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ) |
94 |
93
|
anidms |
⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑥 · 𝑥 ) = ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ) |
95 |
94
|
breq1d |
⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ↔ ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ) ) |
96 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( 𝑥 ∥ 𝑃 ↔ ( 𝑃 / 𝑧 ) ∥ 𝑃 ) ) |
97 |
95 96
|
anbi12d |
⊢ ( 𝑥 = ( 𝑃 / 𝑧 ) → ( ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ↔ ( ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ∧ ( 𝑃 / 𝑧 ) ∥ 𝑃 ) ) ) |
98 |
97
|
rspcev |
⊢ ( ( ( 𝑃 / 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( ( 𝑃 / 𝑧 ) · ( 𝑃 / 𝑧 ) ) ≤ 𝑃 ∧ ( 𝑃 / 𝑧 ) ∥ 𝑃 ) ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) |
99 |
69 92 98
|
syl6an |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( 𝑃 ≤ ( 𝑧 · 𝑧 ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
100 |
70 49
|
letrid |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ( ( 𝑧 · 𝑧 ) ≤ 𝑃 ∨ 𝑃 ≤ ( 𝑧 · 𝑧 ) ) ) |
101 |
33 99 100
|
mpjaod |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) |
102 |
101
|
ex |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑧 ∥ 𝑃 ∧ ¬ 𝑧 = 𝑃 ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
103 |
24 102
|
syl5bir |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
104 |
103
|
rexlimdva |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ) |
105 |
|
prmz |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℤ ) |
106 |
105
|
ad2antrl |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ∈ ℤ ) |
107 |
106
|
zred |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ∈ ℝ ) |
108 |
107 107
|
remulcld |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑧 · 𝑧 ) ∈ ℝ ) |
109 |
|
eluzelz |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℤ ) |
110 |
109
|
ad3antlr |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑥 ∈ ℤ ) |
111 |
110
|
zred |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
112 |
111 111
|
remulcld |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑥 · 𝑥 ) ∈ ℝ ) |
113 |
40
|
ad3antrrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑃 ∈ ℤ ) |
114 |
113
|
zred |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑃 ∈ ℝ ) |
115 |
|
eluz2nn |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℕ ) |
116 |
115
|
ad3antlr |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑥 ∈ ℕ ) |
117 |
|
simprr |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ∥ 𝑥 ) |
118 |
|
dvdsle |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ ) → ( 𝑧 ∥ 𝑥 → 𝑧 ≤ 𝑥 ) ) |
119 |
118
|
imp |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ ) ∧ 𝑧 ∥ 𝑥 ) → 𝑧 ≤ 𝑥 ) |
120 |
106 116 117 119
|
syl21anc |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ≤ 𝑥 ) |
121 |
|
eluzge2nn0 |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℕ0 ) |
122 |
121
|
nn0ge0d |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝑧 ) |
123 |
2 122
|
syl |
⊢ ( 𝑧 ∈ ℙ → 0 ≤ 𝑧 ) |
124 |
123
|
ad2antrl |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 0 ≤ 𝑧 ) |
125 |
|
nnnn0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) |
126 |
125
|
nn0ge0d |
⊢ ( 𝑥 ∈ ℕ → 0 ≤ 𝑥 ) |
127 |
116 126
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 0 ≤ 𝑥 ) |
128 |
|
le2msq |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑧 · 𝑧 ) ≤ ( 𝑥 · 𝑥 ) ) ) |
129 |
107 124 111 127 128
|
syl22anc |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑧 · 𝑧 ) ≤ ( 𝑥 · 𝑥 ) ) ) |
130 |
120 129
|
mpbid |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑧 · 𝑧 ) ≤ ( 𝑥 · 𝑥 ) ) |
131 |
|
simplrl |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑥 · 𝑥 ) ≤ 𝑃 ) |
132 |
108 112 114 130 131
|
letrd |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ( 𝑧 · 𝑧 ) ≤ 𝑃 ) |
133 |
|
simplrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑥 ∥ 𝑃 ) |
134 |
106 110 113 117 133
|
dvdstrd |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → 𝑧 ∥ 𝑃 ) |
135 |
132 134
|
jc |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ∥ 𝑥 ) ) → ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) |
136 |
|
exprmfct |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑧 ∈ ℙ 𝑧 ∥ 𝑥 ) |
137 |
136
|
ad2antlr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) → ∃ 𝑧 ∈ ℙ 𝑧 ∥ 𝑥 ) |
138 |
135 137
|
reximddv |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) ) → ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) |
139 |
138
|
ex |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) → ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
140 |
139
|
rexlimdva |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑥 · 𝑥 ) ≤ 𝑃 ∧ 𝑥 ∥ 𝑃 ) → ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
141 |
104 140
|
syld |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
142 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ¬ ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ¬ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) |
143 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ ℙ ¬ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ¬ ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) |
144 |
141 142 143
|
3imtr3g |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ¬ ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
145 |
23 144
|
impcon4bid |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
146 |
|
prmnn |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℕ ) |
147 |
146
|
nncnd |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℂ ) |
148 |
147
|
sqvald |
⊢ ( 𝑧 ∈ ℙ → ( 𝑧 ↑ 2 ) = ( 𝑧 · 𝑧 ) ) |
149 |
148
|
breq1d |
⊢ ( 𝑧 ∈ ℙ → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ ( 𝑧 · 𝑧 ) ≤ 𝑃 ) ) |
150 |
149
|
imbi1d |
⊢ ( 𝑧 ∈ ℙ → ( ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
151 |
150
|
ralbiia |
⊢ ( ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ∀ 𝑧 ∈ ℙ ( ( 𝑧 · 𝑧 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) |
152 |
145 151
|
bitr4di |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
153 |
152
|
pm5.32i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
154 |
1 153
|
bitri |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |