Step |
Hyp |
Ref |
Expression |
1 |
|
isprm5 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
2 |
|
prmz |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℤ ) |
3 |
2
|
zred |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℝ ) |
4 |
|
0red |
⊢ ( 𝑧 ∈ ℙ → 0 ∈ ℝ ) |
5 |
|
1red |
⊢ ( 𝑧 ∈ ℙ → 1 ∈ ℝ ) |
6 |
|
0lt1 |
⊢ 0 < 1 |
7 |
6
|
a1i |
⊢ ( 𝑧 ∈ ℙ → 0 < 1 ) |
8 |
|
prmgt1 |
⊢ ( 𝑧 ∈ ℙ → 1 < 𝑧 ) |
9 |
4 5 3 7 8
|
lttrd |
⊢ ( 𝑧 ∈ ℙ → 0 < 𝑧 ) |
10 |
4 3 9
|
ltled |
⊢ ( 𝑧 ∈ ℙ → 0 ≤ 𝑧 ) |
11 |
3 10
|
jca |
⊢ ( 𝑧 ∈ ℙ → ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ) |
12 |
|
eluzelre |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) |
13 |
|
0red |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ∈ ℝ ) |
14 |
|
2re |
⊢ 2 ∈ ℝ |
15 |
14
|
a1i |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ ) |
16 |
|
0le2 |
⊢ 0 ≤ 2 |
17 |
16
|
a1i |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 2 ) |
18 |
|
eluzle |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑃 ) |
19 |
13 15 12 17 18
|
letrd |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝑃 ) |
20 |
12 19
|
jca |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) |
21 |
|
resqcl |
⊢ ( 𝑧 ∈ ℝ → ( 𝑧 ↑ 2 ) ∈ ℝ ) |
22 |
|
sqge0 |
⊢ ( 𝑧 ∈ ℝ → 0 ≤ ( 𝑧 ↑ 2 ) ) |
23 |
21 22
|
jca |
⊢ ( 𝑧 ∈ ℝ → ( ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑧 ↑ 2 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) → ( ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑧 ↑ 2 ) ) ) |
25 |
|
sqrtle |
⊢ ( ( ( ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑧 ↑ 2 ) ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ) ) |
26 |
24 25
|
sylan |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ) ) |
27 |
|
sqrtsq |
⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) → ( √ ‘ ( 𝑧 ↑ 2 ) ) = 𝑧 ) |
28 |
27
|
breq1d |
⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) → ( ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
30 |
26 29
|
bitrd |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
31 |
11 20 30
|
syl2anr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
32 |
31
|
imbi1d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
33 |
32
|
ralbidva |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
34 |
33
|
pm5.32i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
35 |
|
impexp |
⊢ ( ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → ¬ 𝑧 ∥ 𝑃 ) ↔ ( 𝑧 ∈ ℙ → ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
36 |
12 19
|
resqrtcld |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ 𝑃 ) ∈ ℝ ) |
37 |
36
|
flcld |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ) |
38 |
37 2
|
anim12i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → ( ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
40 |
|
prmuz2 |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) |
41 |
|
eluzle |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑧 ) |
42 |
40 41
|
syl |
⊢ ( 𝑧 ∈ ℙ → 2 ≤ 𝑧 ) |
43 |
42
|
ad2antlr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 2 ≤ 𝑧 ) |
44 |
|
flge |
⊢ ( ( ( √ ‘ 𝑃 ) ∈ ℝ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
45 |
36 2 44
|
syl2an |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
46 |
45
|
biimpa |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) |
47 |
|
2z |
⊢ 2 ∈ ℤ |
48 |
|
elfz4 |
⊢ ( ( ( 2 ∈ ℤ ∧ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
49 |
47 48
|
mp3anl1 |
⊢ ( ( ( ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
50 |
39 43 46 49
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
51 |
50
|
anasss |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
52 |
|
simprl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ℙ ) |
53 |
51 52
|
elind |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ) |
54 |
53
|
ex |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ) ) |
55 |
|
elin |
⊢ ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ↔ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∧ 𝑧 ∈ ℙ ) ) |
56 |
|
elfzelz |
⊢ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ℤ ) |
57 |
56
|
zred |
⊢ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ℝ ) |
58 |
57
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ∈ ℝ ) |
59 |
|
reflcl |
⊢ ( ( √ ‘ 𝑃 ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℝ ) |
60 |
36 59
|
syl |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℝ ) |
61 |
60
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℝ ) |
62 |
36
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → ( √ ‘ 𝑃 ) ∈ ℝ ) |
63 |
|
elfzle2 |
⊢ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) |
64 |
63
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) |
65 |
|
flle |
⊢ ( ( √ ‘ 𝑃 ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ≤ ( √ ‘ 𝑃 ) ) |
66 |
36 65
|
syl |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ≤ ( √ ‘ 𝑃 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ≤ ( √ ‘ 𝑃 ) ) |
68 |
58 61 62 64 67
|
letrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ≤ ( √ ‘ 𝑃 ) ) |
69 |
68
|
ex |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
70 |
69
|
anim1d |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∧ 𝑧 ∈ ℙ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ∧ 𝑧 ∈ ℙ ) ) ) |
71 |
55 70
|
syl5bi |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ∧ 𝑧 ∈ ℙ ) ) ) |
72 |
|
ancom |
⊢ ( ( 𝑧 ≤ ( √ ‘ 𝑃 ) ∧ 𝑧 ∈ ℙ ) ↔ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
73 |
71 72
|
syl6ib |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) ) |
74 |
54 73
|
impbid |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ↔ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ) ) |
75 |
74
|
imbi1d |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → ¬ 𝑧 ∥ 𝑃 ) ↔ ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
76 |
35 75
|
bitr3id |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℙ → ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ↔ ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
77 |
76
|
ralbidv2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ↔ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |
78 |
77
|
pm5.32i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |
79 |
1 34 78
|
3bitri |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |