| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isprm5 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 2 |
|
prmz |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℤ ) |
| 3 |
2
|
zred |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ℝ ) |
| 4 |
|
0red |
⊢ ( 𝑧 ∈ ℙ → 0 ∈ ℝ ) |
| 5 |
|
1red |
⊢ ( 𝑧 ∈ ℙ → 1 ∈ ℝ ) |
| 6 |
|
0lt1 |
⊢ 0 < 1 |
| 7 |
6
|
a1i |
⊢ ( 𝑧 ∈ ℙ → 0 < 1 ) |
| 8 |
|
prmgt1 |
⊢ ( 𝑧 ∈ ℙ → 1 < 𝑧 ) |
| 9 |
4 5 3 7 8
|
lttrd |
⊢ ( 𝑧 ∈ ℙ → 0 < 𝑧 ) |
| 10 |
4 3 9
|
ltled |
⊢ ( 𝑧 ∈ ℙ → 0 ≤ 𝑧 ) |
| 11 |
3 10
|
jca |
⊢ ( 𝑧 ∈ ℙ → ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ) |
| 12 |
|
eluzelre |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) |
| 13 |
|
0red |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ∈ ℝ ) |
| 14 |
|
2re |
⊢ 2 ∈ ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ ) |
| 16 |
|
0le2 |
⊢ 0 ≤ 2 |
| 17 |
16
|
a1i |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 2 ) |
| 18 |
|
eluzle |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑃 ) |
| 19 |
13 15 12 17 18
|
letrd |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝑃 ) |
| 20 |
12 19
|
jca |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) |
| 21 |
|
resqcl |
⊢ ( 𝑧 ∈ ℝ → ( 𝑧 ↑ 2 ) ∈ ℝ ) |
| 22 |
|
sqge0 |
⊢ ( 𝑧 ∈ ℝ → 0 ≤ ( 𝑧 ↑ 2 ) ) |
| 23 |
21 22
|
jca |
⊢ ( 𝑧 ∈ ℝ → ( ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑧 ↑ 2 ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) → ( ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑧 ↑ 2 ) ) ) |
| 25 |
|
sqrtle |
⊢ ( ( ( ( 𝑧 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑧 ↑ 2 ) ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ) ) |
| 26 |
24 25
|
sylan |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ) ) |
| 27 |
|
sqrtsq |
⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) → ( √ ‘ ( 𝑧 ↑ 2 ) ) = 𝑧 ) |
| 28 |
27
|
breq1d |
⊢ ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) → ( ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( √ ‘ ( 𝑧 ↑ 2 ) ) ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 30 |
26 29
|
bitrd |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ) ∧ ( 𝑃 ∈ ℝ ∧ 0 ≤ 𝑃 ) ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 31 |
11 20 30
|
syl2anr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( ( 𝑧 ↑ 2 ) ≤ 𝑃 ↔ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 32 |
31
|
imbi1d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 33 |
32
|
ralbidva |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ↔ ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 34 |
33
|
pm5.32i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( ( 𝑧 ↑ 2 ) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 35 |
|
impexp |
⊢ ( ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → ¬ 𝑧 ∥ 𝑃 ) ↔ ( 𝑧 ∈ ℙ → ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 36 |
12 19
|
resqrtcld |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ 𝑃 ) ∈ ℝ ) |
| 37 |
36
|
flcld |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ) |
| 38 |
37 2
|
anim12i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → ( ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 40 |
|
prmuz2 |
⊢ ( 𝑧 ∈ ℙ → 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) |
| 41 |
|
eluzle |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑧 ) |
| 42 |
40 41
|
syl |
⊢ ( 𝑧 ∈ ℙ → 2 ≤ 𝑧 ) |
| 43 |
42
|
ad2antlr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 2 ≤ 𝑧 ) |
| 44 |
|
flge |
⊢ ( ( ( √ ‘ 𝑃 ) ∈ ℝ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 45 |
36 2 44
|
syl2an |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ↔ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 46 |
45
|
biimpa |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) |
| 47 |
|
2z |
⊢ 2 ∈ ℤ |
| 48 |
|
elfz4 |
⊢ ( ( ( 2 ∈ ℤ ∧ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 49 |
47 48
|
mp3anl1 |
⊢ ( ( ( ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ( 2 ≤ 𝑧 ∧ 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 50 |
39 43 46 49
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ℙ ) ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 51 |
50
|
anasss |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) |
| 52 |
|
simprl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ℙ ) |
| 53 |
51 52
|
elind |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ) |
| 54 |
53
|
ex |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ) ) |
| 55 |
|
elin |
⊢ ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ↔ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∧ 𝑧 ∈ ℙ ) ) |
| 56 |
|
elfzelz |
⊢ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ℤ ) |
| 57 |
56
|
zred |
⊢ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ∈ ℝ ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ∈ ℝ ) |
| 59 |
|
reflcl |
⊢ ( ( √ ‘ 𝑃 ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℝ ) |
| 60 |
36 59
|
syl |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℝ ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ∈ ℝ ) |
| 62 |
36
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → ( √ ‘ 𝑃 ) ∈ ℝ ) |
| 63 |
|
elfzle2 |
⊢ ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ≤ ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) |
| 65 |
|
flle |
⊢ ( ( √ ‘ 𝑃 ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ≤ ( √ ‘ 𝑃 ) ) |
| 66 |
36 65
|
syl |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ≤ ( √ ‘ 𝑃 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ≤ ( √ ‘ 𝑃 ) ) |
| 68 |
58 61 62 64 67
|
letrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ) → 𝑧 ≤ ( √ ‘ 𝑃 ) ) |
| 69 |
68
|
ex |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) → 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 70 |
69
|
anim1d |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∧ 𝑧 ∈ ℙ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ∧ 𝑧 ∈ ℙ ) ) ) |
| 71 |
55 70
|
biimtrid |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ( 𝑧 ≤ ( √ ‘ 𝑃 ) ∧ 𝑧 ∈ ℙ ) ) ) |
| 72 |
|
ancom |
⊢ ( ( 𝑧 ≤ ( √ ‘ 𝑃 ) ∧ 𝑧 ∈ ℙ ) ↔ ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) |
| 73 |
71 72
|
imbitrdi |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ) ) |
| 74 |
54 73
|
impbid |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) ↔ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ) ) |
| 75 |
74
|
imbi1d |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( ( 𝑧 ∈ ℙ ∧ 𝑧 ≤ ( √ ‘ 𝑃 ) ) → ¬ 𝑧 ∥ 𝑃 ) ↔ ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 76 |
35 75
|
bitr3id |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑧 ∈ ℙ → ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ↔ ( 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) → ¬ 𝑧 ∥ 𝑃 ) ) ) |
| 77 |
76
|
ralbidv2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ↔ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |
| 78 |
77
|
pm5.32i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℙ ( 𝑧 ≤ ( √ ‘ 𝑃 ) → ¬ 𝑧 ∥ 𝑃 ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |
| 79 |
1 34 78
|
3bitri |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝑃 ) ) ) ∩ ℙ ) ¬ 𝑧 ∥ 𝑃 ) ) |