Step |
Hyp |
Ref |
Expression |
1 |
|
isprsd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
isprsd.l |
⊢ ( 𝜑 → ≤ = ( le ‘ 𝐾 ) ) |
3 |
|
isprsd.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
4 |
3
|
elexd |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
7 |
5 6
|
isprs |
⊢ ( 𝐾 ∈ Proset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
8 |
7
|
baib |
⊢ ( 𝐾 ∈ V → ( 𝐾 ∈ Proset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ Proset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
10 |
2
|
breqd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑥 ↔ 𝑥 ( le ‘ 𝐾 ) 𝑥 ) ) |
11 |
2
|
breqd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) ) |
12 |
2
|
breqd |
⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) |
13 |
11 12
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ↔ ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
14 |
2
|
breqd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) |
15 |
13 14
|
imbi12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ↔ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
16 |
10 15
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
17 |
1 16
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
18 |
1 17
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
19 |
1 18
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
20 |
9 19
|
bitr4d |
⊢ ( 𝜑 → ( 𝐾 ∈ Proset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |